def create_dataset(dataset_opt): mode = dataset_opt["mode"] if mode == "LQ": # Predictor from data.LQ_dataset import LQDataset as D dataset = D(dataset_opt) elif mode == "LQGTker": # SFTMD from data.LQGTker_dataset import LQGTKerDataset as D dataset = D(dataset_opt) elif mode == "SRker": # Corrector from data.SRker_dataset import SRkerDataset as D dataset = D(dataset_opt) # elif mode == 'LQGTseg_bg': # from data.LQGT_seg_bg_dataset import LQGTSeg_BG_Dataset as D else: raise NotImplementedError("Dataset [{:s}] is not recognized.".format(mode)) logger = logging.getLogger("base") logger.info( "Dataset [{:s} - {:s}] is created.".format( dataset.__class__.__name__, dataset_opt["name"] ) ) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] # datasets for image restoration if mode == 'LQ': from data.LQ_dataset import LQDataset as D elif mode == 'LQGT': from data.LQGT_dataset import LQGTDataset as D elif mode == 'Color': from data.Color_dataset import ColorDataset as D elif mode == 'ContinueLQGT': from data.ContinueLQGT_dataset import ContinueLQGTDataset as D # datasets for video restoration elif mode == 'REDS': from data.REDS_dataset import REDSDataset as D elif mode == 'Vimeo90K': from data.Vimeo90K_dataset import Vimeo90KDataset as D elif mode == 'video_test': from data.video_test_dataset import VideoTestDataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): # assign dataset # Vimeo90K: Vimeo90K train&val # video_test: Vid4 test mode = dataset_opt['mode'] if mode == 'LQ': from data.LQ_dataset import LQDataset as D elif mode == 'LQGT': from data.LQGT_dataset import LQGTDataset as D elif mode == 'Vimeo90K': from data.Vimeo90K_dataset import Vimeo90KDataset as D elif mode == 'video_test': from data.video_test_dataset import VideoTestDataset as D elif mode in ['DIV2K_easy', 'DIV2K_train']: from data.DIV2K_dataset import ImageTrainDataset as D elif mode in ['DIV2K_val']: from data.DIV2K_dataset import ImageValDataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] if mode == 'LQ': from data.LQ_dataset import LQDataset as D elif mode == 'LQGT': from data.LQGT_dataset import LQGTDataset as D elif mode == 'VISR': from data.VISR_dataset import VISRDataset as D elif mode == 'SEV': from data.SEV_dataset import SEVDataset as D elif mode == 'REDS': from data.REDS_dataset import REDSDataset as D elif mode == 'video_test': from data.video_test_dataset import VideoTestDataset as D # elif mode == 'LQGTseg_bg': # from data.LQGT_seg_bg_dataset import LQGTSeg_BG_Dataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] # mode ~ which dataset to use if mode == 'LQ': from data.LQ_dataset import LQDataset as D dataset = D(dataset_opt) elif mode == 'LQGT': from data.LQGT_dataset import LQGTDataset as D dataset = D(dataset_opt) elif mode == 'FastMRI': from data.fastmri_dataset import FASTMRIDataset as D from data.fastmri import subsample, transforms # Create a mask function mask_func = subsample.RandomMaskFunc(center_fractions=[0.08], accelerations=[4]) class DataTransform: def __call__(self, target, mask_func, seed=None): # Preprocess the data here # target shape: [H, W, 1] or [H, W, 3] if target.shape[2] == 1: img = np.concatenate((target, np.zeros_like(target)), axis=2) assert img.shape[-1] == 2 img = transforms.to_tensor(img) kspace = transforms.fft2(img) center_kspace, _ = transforms.apply_mask(kspace, mask_func, seed=seed) img_LF = transforms.complex_abs( transforms.ifft2(center_kspace)) img_LF = img_LF.unsqueeze(0) # img_LF tensor should have shape [H, W, ?] target = transforms.to_tensor(np.transpose( target, (2, 0, 1))) # target shape [1, H, W] return img_LF, target dataset = D(dataset_opt, mask_func, transform=DataTransform()) else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt, is_train=True): mode = dataset_opt['mode'] # datasets for image restoration if mode == 'LQ': from data.LQ_dataset import LQDataset as D elif mode == 'LQGT': from data.LQGT_dataset import LQGTDataset as D elif mode == 'RANK_IMIM_Pair': from data.Rank_IMIM_Pair_dataset import RANK_IMIM_Pair_Dataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) if 'RANK_IMIM_Pair' in mode: dataset = D(dataset_opt, is_train=is_train) else: dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] # datasets for image restoration if mode == 'LQ': from data.LQ_dataset import LQDataset as D elif mode == 'LQGT': from data.LQGT_dataset import LQGTDataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] if mode == 'LQ': from data.LQ_dataset import LQDataset as D elif mode == 'LQGT': from data.LQGT_dataset import LQGTDataset as D elif mode == 'LQGT_nopatch': from data.LQGT_nopatch_dataset import LQGTDataset as D # elif mode == 'LQGTseg_bg': # from data.LQGT_seg_bg_dataset import LQGTSeg_BG_Dataset as D else: raise NotImplementedError( 'Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format( dataset.__class__.__name__, dataset_opt['name'])) return dataset
def create_dataset(dataset_opt): mode = dataset_opt['mode'] # datasets for image restoration if mode == 'LQ': from data.LQ_dataset import LQDataset as D elif mode == 'LQGT': from data.LQGT_dataset import LQGTDataset as D # datasets for video restoration elif mode == 'REDS': from data.REDS_dataset import REDSDataset as D elif mode == 'REDSImg': from data.REDS_dataset import REDSImgDataset as D elif mode == 'REDSMultiImg': from data.REDS_dataset import REDSMultiImgDataset as D elif mode == 'MultiREDS': from data.REDS_dataset import MultiREDSDataset as D elif mode == 'MetaREDS': from data.REDS_dataset import MetaREDSDataset as D elif mode == 'MetaREDSOnline': from data.REDS_dataset import MetaREDSDatasetOnline as D elif mode == 'UPREDS': from data.REDS_dataset import UPREDSDataset as D elif mode == 'Vimeo90K': from data.Vimeo90K_dataset import Vimeo90KDataset as D elif mode == 'UPVimeo': from data.Vimeo90K_dataset import UPVimeoDataset as D elif mode == 'video_test': from data.video_test_dataset import VideoTestDataset as D elif mode == 'online_video_test': from data.video_test_dataset import OnlineVideoTestDataset as D elif mode == 'img_test': from data.video_test_dataset import ImgTestDataset as D else: raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode)) dataset = D(dataset_opt) logger = logging.getLogger('base') logger.info('Dataset [{:s} - {:s}] is created.'.format(dataset.__class__.__name__, dataset_opt['name'])) return dataset