示例#1
0
            model.load_state_dict(torch.load(pretrained_weights))
        model = model.to(device)

        if device == 'cuda':
            net = torch.nn.DataParallel(model)
            cudnn.benchmark = True

        criterion = nn.MSELoss()
        optimizer = optim.Adam(model.parameters(), lr=LR)

        # data
        trainset = PanopticDataset(root_dir=data_root_dir,
                                   data_file=train_split,
                                   resize_height=HEIGHT,
                                   resize_width=WIDTH,
                                   clip_len=FRAMES,
                                   skip_len=SKIP_LEN,
                                   random_all=RANDOM_ALL,
                                   close_views=CLOSE_VIEWS,
                                   close_cams_file=close_cams_file,
                                   precrop=PRECROP)
        trainloader = torch.utils.data.DataLoader(trainset,
                                                  batch_size=BATCH_SIZE,
                                                  shuffle=True,
                                                  num_workers=2)

        testset = PanopticDataset(root_dir=data_root_dir,
                                  data_file=test_split,
                                  resize_height=HEIGHT,
                                  resize_width=WIDTH,
                                  clip_len=FRAMES,
                                  skip_len=SKIP_LEN,
示例#2
0
        model = FullNetwork(vp_value_count=3,
                            output_shape=(BATCH_SIZE, CHANNELS, FRAMES, HEIGHT,
                                          WIDTH))
        model.load_state_dict(torch.load(weights_path))
        model = model.to(device)

        if device == 'cuda':
            net = torch.nn.DataParallel(model)
            cudnn.benchmark = True

        criterion = nn.MSELoss()

        testset = PanopticDataset(root_dir=data_root_dir,
                                  data_file=test_split,
                                  resize_height=HEIGHT,
                                  resize_width=WIDTH,
                                  clip_len=FRAMES,
                                  skip_len=SKIP_LEN,
                                  random_all=RANDOM_ALL,
                                  precrop=PRECROP)
        testloader = torch.utils.data.DataLoader(testset,
                                                 batch_size=BATCH_SIZE,
                                                 shuffle=False,
                                                 num_workers=2)

    else:
        print(
            'This network has only been set up to run on the NTU and panoptic datasets.'
        )

    print_params()
    print(model)