def __init__(self):
        self.config = TCNNConfig()
        self.categories, self.cat_to_id = read_category()
        self.words, self.word_to_id = read_vocab(vocab_dir)
        self.config.vocab_size = len(self.words)
        self.model = TextCNN(self.config)

        self.session = tf.Session()
        self.session.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        saver.restore(sess=self.session, save_path=save_path)  # 读取保存的模型
示例#2
0
文件: run_rnn.py 项目: wxxing/Scope
    # 评估
    print("Precision, Recall and F1-Score...")
    print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories))

    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
    print(cm)

    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)


if __name__ == '__main__':
    # if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
    #     raise ValueError("""usage: python run_rnn.py [train / test]""")

    print('Configuring RNN model...')
    config = TRNNConfig()
    if not os.path.exists(vocab_dir):  # 如果不存在词汇表,重建
        build_vocab(train_dir, vocab_dir, config.vocab_size)
    categories, cat_to_id = read_category()
    words, word_to_id = read_vocab(vocab_dir)
    config.vocab_size = len(words)
    model = TextRNN(config)

    # if sys.argv[1] == 'train':
    train()
    # else:
    #     test()
    # 评估
    print("Precision, Recall and F1-Score...")
    print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories))

    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
    print(cm)

    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)


if __name__ == '__main__':
    if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
        raise ValueError("""usage: python run_rnn.py [train / test]""")

    print('Configuring RNN model...')
    config = TRNNConfig()
    if not os.path.exists(vocab_dir):  # 如果不存在词汇表,重建
        build_vocab(train_dir, vocab_dir, config.vocab_size)
    categories, cat_to_id = read_category()
    words, word_to_id = read_vocab(vocab_dir)
    config.vocab_size = len(words)
    model = TextRNN(config)

    if sys.argv[1] == 'train':
        train()
    else:
        test()
示例#4
0
    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
    print(cm)

    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)


if __name__ == '__main__':
    if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
        raise ValueError("""usage: python run_cnn.py [train / test]""")

    print('Configuring CNN model...')
    config = TCNNConfig()  # 读取配置文件
    if not os.path.exists(
            vocab_dir):  # 如果不存在词汇表,用train_dir中频率最高的vocab_size-1个词构建词汇表
        build_vocab(train_dir, vocab_dir, config.vocab_size)
    categories, cat_to_id = read_category()  # 读分类list 和 分类-id 字典
    words, word_to_id = read_vocab(vocab_dir)  # 读词汇表list 和 words-id 字典
    config.vocab_size = len(words)  # 词汇表大小重新设定
    model = TextCNN(config)

    if sys.argv[1] == 'train':
        train()
    elif sys.argv[1] == 'test':
        test()
    else:
        raise ValueError("""usage: python run_cnn.py [train / test]""")
示例#5
0
print(len(corpus))

train_dic = get_dic('data/Obesity_data/train_groundtruth.xml')
test_dic = get_dic('data/Obesity_data/test_groundtruth.xml')

test_dic_text_rule = get_dic(
    'perl_classifier/output/system_textual_annotation.xml')
test_dic_int_rule = get_dic(
    'perl_classifier/output/system_intuitive_annotation.xml')

# Read CUI Vectors
word_vector_file = 'data/DeVine_etal_200.txt'
vocab, embd, word_vector_map = loadWord2Vec(word_vector_file)
embedding_dim = len(embd[0])
#embeddings = np.asarray(embd)
cnn.categories, cnn.cat_to_id, cnn.id_to_cat = read_category()

doc = Dom.Document()
root_node = doc.createElement("diseaseset")
doc.appendChild(root_node)

for key in train_dic:
    train_sub_dic = train_dic[key]
    test_sub_dic = test_dic[key]
    source_node = doc.createElement("diseases")
    source_node.setAttribute("source", key)
    for sub_key in train_sub_dic:
        disease_node = doc.createElement("disease")
        disease_node.setAttribute("name", sub_key)

        cnn.base_dir = 'data/obesity_rnn'
def train(model,data):
    if 
    print("Configuring TensorBoard and Saver...")
    # 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖
    tensorboard_dir = 'tensorboard/textcnn'
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    tf.summary.scalar("loss", model.loss)
    tf.summary.scalar("accuracy", model.acc)
    merged_summary = tf.summary.merge_all()
    writer = tf.summary.FileWriter(tensorboard_dir)

    # 配置 Saver
    saver = tf.train.Saver()
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    print("Loading training and validation data...")
    # 载入训练集与验证集
    start_time = time.time()
    x_train, y_train = process_file(train_dir, word_to_id, cat_to_id, config.seq_length)
    x_val, y_val = process_file(val_dir, word_to_id, cat_to_id, config.seq_length)
    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)

    # 创建session
    session = tf.Session()
    session.run(tf.global_variables_initializer())
    writer.add_graph(session.graph)

    print('Training and evaluating...')
    start_time = time.time()
    total_batch = 0  # 总批次
    best_acc_val = 0.0  # 最佳验证集准确率
    last_improved = 0  # 记录上一次提升批次
    require_improvement = 1000  # 如果超过1000轮未提升,提前结束训练

    flag = False
    for epoch in range(config.num_epochs):
        print('Epoch:', epoch + 1)
        batch_train = batch_iter(x_train, y_train, config.batch_size)
        for x_batch, y_batch in batch_train:
            feed_dict = feed_data(x_batch, y_batch, config.dropout_keep_prob)

            if total_batch % config.save_per_batch == 0:
                # 每多少轮次将训练结果写入tensorboard scalar
                s = session.run(merged_summary, feed_dict=feed_dict)
                writer.add_summary(s, total_batch)

            if total_batch % config.print_per_batch == 0:
                # 每多少轮次输出在训练集和验证集上的性能
                feed_dict[model.keep_prob] = 1.0
                loss_train, acc_train = session.run([model.loss, model.acc], feed_dict=feed_dict)
                loss_val, acc_val = evaluate(session, x_val, y_val)  # todo

                if acc_val > best_acc_val:
                    # 保存最好结果
                    best_acc_val = acc_val
                    last_improved = total_batch
                    saver.save(sess=session, save_path=save_path)
                    improved_str = '*'
                else:
                    improved_str = ''

                time_dif = get_time_dif(start_time)
                msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \
                      + ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'
                print(msg.format(total_batch, loss_train, acc_train, loss_val, acc_val, time_dif, improved_str))

            session.run(model.optim, feed_dict=feed_dict)  # 运行优化
            total_batch += 1

            if total_batch - last_improved > require_improvement:
                # 验证集正确率长期不提升,提前结束训练
                print("No optimization for a long time, auto-stopping...")
                flag = True
                break  # 跳出循环
        if flag:  # 同上
            break


def test():
    print("Loading test data...")
    start_time = time.time()
    x_test, y_test = process_file(test_dir, word_to_id, cat_to_id, config.seq_length)

    session = tf.Session()
    session.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.restore(sess=session, save_path=save_path)  # 读取保存的模型

    print('Testing...')
    loss_test, acc_test = evaluate(session, x_test, y_test)
    msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}'
    print(msg.format(loss_test, acc_test))

    batch_size = 128
    data_len = len(x_test)
    num_batch = int((data_len - 1) / batch_size) + 1

    y_test_cls = np.argmax(y_test, 1)
    y_pred_cls = np.zeros(shape=len(x_test), dtype=np.int32)  # 保存预测结果
    for i in range(num_batch):  # 逐批次处理
        start_id = i * batch_size
        end_id = min((i + 1) * batch_size, data_len)
        feed_dict = {
            model.input_x: x_test[start_id:end_id],
            model.keep_prob: 1.0
        }
        y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls, feed_dict=feed_dict)

    # 评估
    print("Precision, Recall and F1-Score...")
    print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories))

    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
    print(cm)

    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)


if __name__ == '__main__':
    #if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
    #    raise ValueError("""usage: python run_cnn.py [train / test]""")

    print('Configuring CNN model...')
    config = TCNNConfig()
    if not os.path.exists(vocab_dir):  # 如果不存在词汇表,重建
        build_vocab(train_dir, vocab_dir, config.vocab_size)
    categories, cat_to_id = read_category()
    words, word_to_id = read_vocab(vocab_dir)
    config.vocab_size = len(words)
    model = TextCNN(config)

    #if sys.argv[1] == 'train':
    #    train()
    #else:
    #    test()
    train()
示例#7
0
    print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories))

    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
    print(cm)

    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)


if __name__ == '__main__':
    # 输入参数 train 和 test 表示训练与测试
    # 需要在命令行运行 python run_cnn.py <train>|<test>
    if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
        raise ValueError("""usage: python run_cnn.py [train / test]""")

    print('Configuring CNN model...')
    config = TCNNConfig()  # 获得TCNNConfig设置,TCNNConfig表示CNN配置参数
    if not os.path.exists(vocab_dir):  # 如果不存在词汇表,重建 单词表长度5000,是train里面出现最频繁的5000个单词
        build_vocab(train_dir, vocab_dir, config.vocab_size)
    categories, cat_to_id = read_category()  # read_category()获取目录,cat_to_id 标签:序号的字典
    words, word_to_id = read_vocab(vocab_dir)  # 将词汇表的各个单词编号
    config.vocab_size = len(words)  # 更新词汇表长度
    model = TextCNN(config)  # 构建CNN模型,很重要

    if sys.argv[1] == 'train':
        train()
    else:
        test()
示例#8
0
    # 评估
    print("Precision, Recall and F1-Score...")
    print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories))

    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
    print(cm)

    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)


if __name__ == '__main__':
    if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
        raise ValueError("""usage: python run_rnn.py [train / test]""")

    print('Configuring RNN model...')
    config = TRNNConfig()
    if not os.path.exists(vocab_dir):  # 如果不存在词汇表,重建
        build_vocab(train_dir, vocab_dir, config.vocab_size)
    categories, cat_to_id = read_category(category_dir)
    words, word_to_id = read_vocab(vocab_dir)
    config.vocab_size = len(words)
    model = TextRNN(config)

    if sys.argv[1] == 'train':
        train()
    else:
        test()
示例#9
0
                                      y_pred_cls,
                                      target_names=categories))

    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
    print(cm)

    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)
    return y_pred_cls


if __name__ == '__main__':
    if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
        raise ValueError("""usage: python run_cnn.py [train / test]""")

    print('Configuring CNN model...')
    config = TCNNConfig()
    if not os.path.exists(vocab_dir):  # 如果不存在词汇表,重建
        build_vocab(train_dir, vocab_dir, config.vocab_size)
    categories, cat_to_id, id_to_cat = read_category()
    words, word_to_id = read_vocab(vocab_dir)
    config.vocab_size = len(words)
    model = TextCNN(config)

    if sys.argv[1] == 'train':
        train()
    else:
        test()
示例#10
0
        config = TRNNConfig()
        t_name = sys.argv[3]
        t_th = sys.argv[2]
        data_dir = sys.argv[4]
        base_dir = 'data/' + data_dir + '/' + t_name
        classes = sys.argv[5].split('-')

        train_dir = os.path.join(base_dir, 'train.csv')
        test_dir = os.path.join(base_dir, 'test.csv')
        val_dir = os.path.join(base_dir, 'dev.csv')
        vocab_dir = os.path.join('data/data_orginal/'+t_name, 'vocab.csv')

        if not os.path.exists(vocab_dir):  # 如果不存在词汇表,重建
            print(' vocab_dir not exists: ',vocab_dir)
            build_vocab('data/data_orginal/'+t_name+'/whole.csv', vocab_dir, config.vocab_size)
        categories, cat_to_id = read_category(classes)
        words, word_to_id = read_vocab(vocab_dir)
        config.vocab_size = len(words)
        config.num_classes = len(classes)

        mode_name = 'textrnn'
        save_dir = 'checkpoints/' + t_name + '/' + mode_name + '_' + t_name + "_" + data_dir + '_' + t_th + 'th'
        print('save_dir:', save_dir)
        save_path = os.path.join(save_dir, 'best_validation')  # 最佳验证结果保存路径

        model = TextRNN(config)
        if sys.argv[1] == 'train':
            train()
        else:
            test()
    else: