def run_perm_test(row): row_array = row.split(';') perm_ind = row_array[0] perm_y = row_array[1] perm_y = np.asarray(perm_y.split(',')).astype(int) analysis_name = 'whole_brain_noTiv_perm_' + str(perm_ind) project_folder = './perm/' # get data data = IQData(tiv_rescaled=False) covariates = np.asarray([data.age, data.gender, data.handedness]).T data.load_whole_brain(use_cached=True) # run analysis pipe = construct_hyperpipe(analysis_name, project_folder) pipe.groups = data.fsiq pipe.fit(data.whole_brain, perm_y, **{'covariates': covariates}) os.remove(pipe.output_settings.pretrained_model_filename)
def run_perm_test(row): row_array = row.split(';') perm_ind = row_array[0] perm_y = row_array[1] perm_y = np.asarray(perm_y.split(',')).astype(int) analysis_name = 'whole_brain_perm_' + str(perm_ind) data_folder = '/scratch/tmp/wintern/iq_frankfurt/' project_folder = '/scratch/tmp/wintern/iq_frankfurt/results/perm/whole_brain/' cache_dir = '/scratch/tmp/wintern/cache' # get data data = IQData(data_folder=data_folder) covariates = np.asarray([data.age, data.gender, data.handedness]).T data.load_whole_brain(use_cached=True) # run analysis pipe = construct_hyperpipe(analysis_name, project_folder, cache_dir) pipe.groups = data.fsiq pipe.fit(data.whole_brain, perm_y, **{'covariates': covariates}) os.remove(pipe.output_settings.pretrained_model_filename)
This scripts implements the global (whole brain) analysis without TiV rescaling Version ------- Created: 28-01-2019 Last updated: 29-09-2019 Author ------ Nils R. Winter [email protected] Translationale Psychiatrie Universitaetsklinikum Muenster """ from analyses.analysis_base import construct_hyperpipe from data.data import IQData import numpy as np import os analysis_name = 'whole_brain_no_tiv_rescaling' project_folder = '.' # get data data = IQData() covariates = np.asarray([data.age, data.gender, data.handedness]).T data.load_whole_brain(use_cached=True) # run analysis pipe = construct_hyperpipe(analysis_name, project_folder) pipe.fit(data.whole_brain, data.fsiq, **{'covariates': covariates}) os.remove(pipe.output_settings.pretrained_model_filename)