def __init__(self): self.image_type = 'OA' self.dataset = ProcessData(train_ratio=0.9, process_raw_data=False, do_augment=False, add_augment=True, do_flip=True, do_blur=True, do_deform=True, do_crop=True, image_type=self.image_type, get_scale_center=False, single_sample=True) self.model = cnn_toy_model.cnn_skipC_model(criterion=nn.MSELoss(), optimizer=torch.optim.Adam, learning_rate=0.001, weight_decay=0) if torch.cuda.is_available(): torch.cuda.current_device() self.model.cuda() self.logger = Logger(model=self.model, project_root_dir=self.dataset.project_root_dir, image_type=self.image_type) self.epochs = 2
def __init__(self, image_type, batch_size, log_period, epochs, data_type, train_ratio, process_raw_data, pro_and_augm_only_image_type, do_heavy_augment,do_augment, add_augment, do_rchannels,do_flip, do_blur, do_deform, do_crop,do_speckle_noise, trunc_points, get_scale_center, single_sample,do_scale_center, height_channel_oa, use_regressed_oa, include_regression_error, add_f_test, only_f_test_in_target, channel_slice_oa, process_all_raw_folders, conv_channels,kernels, model_name, input_size,output_channels, drop_probs, di_conv_channels, dilations, learning_rates, hetero_mask_to_mask,hyper_no, input_ds_mask, input_ss_mask, ds_mask_channels, add_skip): self.image_type = image_type self.batch_size = batch_size self.log_period = log_period self.epochs = epochs self.dataset = ProcessData(data_type=data_type, train_ratio=train_ratio, process_raw_data=process_raw_data, pro_and_augm_only_image_type=pro_and_augm_only_image_type, do_heavy_augment=do_heavy_augment, do_augment=do_augment, add_augment=add_augment, do_rchannels=do_rchannels, do_flip=do_flip, do_blur=do_blur, do_deform=do_deform, do_crop=do_crop, do_speckle_noise=do_speckle_noise,trunc_points=trunc_points, image_type=image_type, get_scale_center=get_scale_center, single_sample=single_sample, do_scale_center=do_scale_center, height_channel_oa=height_channel_oa, use_regressed_oa=use_regressed_oa, include_regression_error=include_regression_error, add_f_test=add_f_test, only_f_test_in_target=only_f_test_in_target, channel_slice_oa=channel_slice_oa, process_all_raw_folders=process_all_raw_folders, hetero_mask_to_mask=hetero_mask_to_mask) self.model_convdeconv = ConvDeconv(conv_channels=conv_channels, kernels=kernels, model_name=model_name, input_size=input_size, output_channels=output_channels, drop_probs=drop_probs, add_skip=add_skip) self.model_dilated = DilatedTranslator(conv_channels=di_conv_channels, dilations=dilations) self.model = ImageTranslator([self.model_dilated]) if torch.cuda.is_available(): torch.cuda.current_device() self.model.cuda() self.learning_rates = learning_rates self.logger = Logger(model=self.model, project_root_dir=self.dataset.project_root_dir, image_type=self.image_type, dataset=self.dataset, batch_size=self.batch_size, epochs=self.epochs,learning_rates=self.learning_rates,hyper_no=hyper_no)
def __init__(self): self.dataset = ProcessData(train_ratio=0.3, process_raw_data=False, do_augment=False, image_type='US', get_scale_center=False, single_sample=True) self.model = cnn_skipC_model.cnn_skipC_model( criterion=nn.MSELoss(), optimizer=torch.optim.Adam, learning_rate=0.01, weight_decay=0) self.model_2 = awesomeImageTranslator1000.AwesomeImageTranslator1000( criterion=nn.MSELoss(), optimizer=torch.optim.Adam, learning_rate=0.01, weight_decay=0) self.logger = Logger()
class CNN_skipCo_trainer(object): def __init__(self, image_type, batch_size, log_period, epochs, data_type, train_ratio, process_raw_data, pro_and_augm_only_image_type, do_heavy_augment,do_augment, add_augment, do_rchannels,do_flip, do_blur, do_deform, do_crop,do_speckle_noise, trunc_points, get_scale_center, single_sample,do_scale_center, height_channel_oa, use_regressed_oa, include_regression_error, add_f_test, only_f_test_in_target, channel_slice_oa, process_all_raw_folders, conv_channels,kernels, model_name, input_size,output_channels, drop_probs, di_conv_channels, dilations, learning_rates, hetero_mask_to_mask,hyper_no, input_ds_mask, input_ss_mask, ds_mask_channels, add_skip): self.image_type = image_type self.batch_size = batch_size self.log_period = log_period self.epochs = epochs self.dataset = ProcessData(data_type=data_type, train_ratio=train_ratio, process_raw_data=process_raw_data, pro_and_augm_only_image_type=pro_and_augm_only_image_type, do_heavy_augment=do_heavy_augment, do_augment=do_augment, add_augment=add_augment, do_rchannels=do_rchannels, do_flip=do_flip, do_blur=do_blur, do_deform=do_deform, do_crop=do_crop, do_speckle_noise=do_speckle_noise,trunc_points=trunc_points, image_type=image_type, get_scale_center=get_scale_center, single_sample=single_sample, do_scale_center=do_scale_center, height_channel_oa=height_channel_oa, use_regressed_oa=use_regressed_oa, include_regression_error=include_regression_error, add_f_test=add_f_test, only_f_test_in_target=only_f_test_in_target, channel_slice_oa=channel_slice_oa, process_all_raw_folders=process_all_raw_folders, hetero_mask_to_mask=hetero_mask_to_mask) self.model_convdeconv = ConvDeconv(conv_channels=conv_channels, kernels=kernels, model_name=model_name, input_size=input_size, output_channels=output_channels, drop_probs=drop_probs, add_skip=add_skip) self.model_dilated = DilatedTranslator(conv_channels=di_conv_channels, dilations=dilations) self.model = ImageTranslator([self.model_dilated]) if torch.cuda.is_available(): torch.cuda.current_device() self.model.cuda() self.learning_rates = learning_rates self.logger = Logger(model=self.model, project_root_dir=self.dataset.project_root_dir, image_type=self.image_type, dataset=self.dataset, batch_size=self.batch_size, epochs=self.epochs,learning_rates=self.learning_rates,hyper_no=hyper_no) def fit(self, learning_rate, lr_method='standard'): # get scale and center parameters scale_params_low, scale_params_high = self.dataset.load_params(param_type="scale_params") mean_image_low, mean_image_high = self.dataset.load_params(param_type="mean_images") # load validation set, normalize and parse into tensor input_tensor_val, target_tensor_val = self.dataset.scale_and_parse_to_tensor( batch_files=self.dataset.val_file_names, scale_params_low=scale_params_low, scale_params_high=scale_params_high, mean_image_low=mean_image_low, mean_image_high=mean_image_high) if torch.cuda.is_available(): input_tensor_val = input_tensor_val.cuda() target_tensor_val = target_tensor_val.cuda() # activate optimizer with the base learning rate self.model.activate_optimizer(learning_rate) # now calculate the learning rates list self.learning_rates = self.get_learning_rate(learning_rate, self.epochs, lr_method) for e in range(0, self.epochs): # setting the learning rate each epoch lr = self.learning_rates[e] self.model.set_learning_rate(lr) # separate names into random batches and shuffle every epoch self.dataset.batch_names(batch_size=self.batch_size) # in self.batch_number is the number of batches in the training set # go through all the batches for i in range(self.dataset.batch_number): input_tensor, target_tensor = self.dataset.scale_and_parse_to_tensor( batch_files=self.dataset.train_batch_chunks[i], scale_params_low=scale_params_low, scale_params_high=scale_params_high, mean_image_low=mean_image_low, mean_image_high=mean_image_high) if torch.cuda.is_available(): input_tensor = input_tensor.cuda() target_tensor = target_tensor.cuda() self.model.train_model(input_tensor, target_tensor, current_epoch=e) # calculate the validation loss and add to validation history self.logger.get_val_loss(val_in=input_tensor_val, val_target=target_tensor_val) # save model every x epochs if e % self.log_period == 0 or e == self.epochs - 1: self.logger.log(save_appendix='_epoch_' + str(e), current_epoch=e, epochs=self.epochs, mean_images=[mean_image_low, mean_image_high], scale_params=[scale_params_low, scale_params_high], learning_rates=self.learning_rates) def find_lr(self, init_value=1e-8, final_value=10., beta=0.98): """ learning rate finder. goes through multiple learning rates and does one forward pass with each and tracks the loss. it returns the learning rates and losses so one can make an image of the loss from which one can find a suitable learning rate. Pick the highest one on which the loss is still decreasing (so not the minimum) :param train_in: training data input :param target: training data target :param init_value: inital value which the learning rate start with. init_value < final_value. Default: 1e-8 :param final_value: last value of the learning rate. Default: 10. :param beta: used for smoothing the loss. Default: 0.98 :return: log_learning_rates, losses """ # get scale and center parameters scale_params_low, scale_params_high = self.dataset.load_params(param_type="scale_params") mean_image_low, mean_image_high = self.dataset.load_params(param_type="mean_images") import math self.dataset.batch_names(batch_size=2) print('number of files: ', len(self.dataset.train_file_names)) num = self.dataset.batch_number-1 mult = (final_value / init_value) ** (1 / num) lr = init_value self.model.optimizer.param_groups[0]['lr'] = lr avg_loss = 0.; best_loss = 0.; batch_num = 0; losses = []; log_lrs = [] # in self.batch_number is the number of batches in the training set print('batch numbers: ', self.dataset.batch_number) for i in range(self.dataset.batch_number): sys.stdout.write('\r' + 'current iteration : ' + str(i)) input_tensor, target_tensor = self.dataset.scale_and_parse_to_tensor( batch_files=self.dataset.val_file_names, scale_params_low=scale_params_low, scale_params_high=scale_params_high, mean_image_low=mean_image_low, mean_image_high=mean_image_high) if torch.cuda.is_available(): input_tensor = input_tensor.cuda() target_tensor = target_tensor.cuda() batch_num += 1 # As before, get the loss for this mini-batch of inputs/outputs self.model.optimizer.zero_grad() print('lr: ', lr) outputs = self.model.forward(input_tensor) loss = self.model.criterion(outputs, target_tensor) # Compute the smoothed loss avg_loss = beta * avg_loss + (1 - beta) * loss.item() smoothed_loss = avg_loss / (1 - beta ** batch_num) # Stop if the loss is exploding if batch_num > 1 and smoothed_loss > 4 * best_loss: print('loss exploding') return log_lrs, losses # Record the best loss if smoothed_loss < best_loss or batch_num == 1: best_loss = smoothed_loss # Store the values losses.append(smoothed_loss) log_lrs.append(math.log10(lr)) # Do the SGD step loss.backward() self.model.optimizer.step() # Update the lr for the next step lr *= mult self.model.optimizer.param_groups[0]['lr'] = lr # Plot the results ''' lrs = 10 ** np.array(log_lrs) fig, ax = plt.subplots(1) ax.plot(lrs, losses) ax.set_xscale('log') #ax.set_xlim((1e-8, 100)) ax.figure.show() ax.figure.savefig('learning_rate_finder.png') ''' return log_lrs, losses def get_learning_rate(self, learning_rate, epochs, method): """ Method creating the learning rates corresponding to the corresponding adaptive-method. :param learning_rate: base learning rate. Used as max rate for one_cycle and cosine_annealing :param epochs: number of epochs the model is trained :param method: adaptive-method which should be used: standard, one_cycle, cosine_annealing :return: learning_rates as a list """ lrs = [] if method == 'standard' or method is None: lrs = [learning_rate for i in range(epochs)] elif method == 'one_cycle': higher_rate = learning_rate lower_rate = 1 / 10 * higher_rate ann_frac = min(50, int(epochs/3)) up_num = int((epochs - ann_frac) / 2) down_num = up_num ann_num = epochs - up_num - down_num lr_up = np.linspace(lower_rate, higher_rate, num=up_num) lr_down = np.linspace(higher_rate, lower_rate, num=down_num) lr_anihilating = np.linspace(lower_rate, 0, num=ann_num) lrs = np.append(np.append(lr_up, lr_down), lr_anihilating) elif method=='cosine_annealing': pass return lrs
class CNN_skipCo_trainer(object): def __init__(self): self.dataset = ProcessData(train_ratio=0.3, process_raw_data=False, do_augment=False, image_type='US', get_scale_center=False, single_sample=True) self.model = cnn_skipC_model.cnn_skipC_model( criterion=nn.MSELoss(), optimizer=torch.optim.Adam, learning_rate=0.01, weight_decay=0) self.model_2 = awesomeImageTranslator1000.AwesomeImageTranslator1000( criterion=nn.MSELoss(), optimizer=torch.optim.Adam, learning_rate=0.01, weight_decay=0) self.logger = Logger() def fit(self, epochs=10): # get scale and center parameters scale_params_low, scale_params_high = utils.load_params( image_type=self.dataset.image_type, param_type="scale_params") mean_image_low, mean_image_high = utils.load_params( image_type=self.dataset.image_type, param_type="mean_images") # currently for one image: ''' self.dataset.batch_names(batch_size=5) X, Y = self.dataset.create_train_batches(self.dataset.train_batch_chunks[1]) print(X.shape) X = X[0,:,:] Y = Y[0,:,:] ''' for e in range(0, epochs): # separate names into random batches and shuffle every epoch self.dataset.batch_names(batch_size=5) # in self.batch_number is the number of batches in the training set for i in range(self.dataset.batch_number): X, Y = self.dataset.create_train_batches( self.dataset.train_batch_chunks[i]) # scale and center the batch scale_center_X = utils.scale_and_center( X, scale_params_low, mean_image_low, image_type=self.dataset.image_type) scale_center_Y = utils.scale_and_center( Y, scale_params_high, mean_image_high, image_type=self.dataset.image_type) scale_center_X = np.array([scale_center_X]) scale_center_Y = np.array([scale_center_Y]) # (C, N, H, W) to (N, C, H, W) scale_center_X = scale_center_X.reshape( scale_center_X.shape[1], scale_center_X.shape[0], scale_center_X.shape[2], scale_center_X.shape[3]) scale_center_Y = scale_center_Y.reshape( scale_center_Y.shape[1], scale_center_Y.shape[0], scale_center_Y.shape[2], scale_center_Y.shape[3]) input_tensor, target_tensor = torch.from_numpy( scale_center_X), torch.from_numpy(scale_center_Y) if torch.cuda.is_available(): #print('CUDA available') #print('current device ' + str(cur_dev)) #print('device count ' + str(torch.cuda.device_count())) #print('device name ' + torch.cuda.get_device_name(cur_dev)) cur_dev = torch.cuda.current_device() input_tensor.cuda() target_tensor.cuda() #self.model.train_model(input_tensor, target_tensor, current_epoch=e) self.model.train_model(input_tensor, target_tensor, current_epoch=e) # save model every x epochs if e % 5 == 0: self.logger.save_model(self.model, model_name=self.model.model_name + '_' + str(datetime.datetime.now()) + '_epoch_' + str(e)) self.logger.save_loss(self.model.model_name, self.model.train_loss, self.model.test_loss) # save model every 50 epochs #if e % 50 == 0: # self.logger.save_model(self.model, model_name=self.model.model_name + '_epoch_' + str(e)) if e == 0: self.logger.save_scale_center_params( model_name=self.model.model_name, mean_images=[mean_image_low, mean_image_high], scale_params=[scale_params_low, scale_params_high]) self.logger.save_representation_of_model( self.model.model_name, str(self.model)) ## how to undo the scaling: #unscaled_X = utils.scale_and_center_reverse(scale_center_X, scale_params_low, mean_image_low, image_type = self.dataset.image_type) #unscaled_Y = utils.scale_and_center_reverse(scale_center_Y, scale_params_high, mean_image_high, image_type=self.dataset.image_type) def predict(self): #self.model.predict() # see self.dataset.X_val and self.dataset.Y_val pass def log_model(self, model_name=None): self.logger.log(self.model, model_name=model_name, train_loss=self.model.train_loss, model_structure=str(self.model))
class CNN_skipCo_trainer(object): def __init__(self): self.image_type = 'OA' self.dataset = ProcessData(train_ratio=0.9, process_raw_data=False, do_augment=False, add_augment=True, do_flip=True, do_blur=True, do_deform=True, do_crop=True, image_type=self.image_type, get_scale_center=False, single_sample=True) self.model = cnn_toy_model.cnn_skipC_model(criterion=nn.MSELoss(), optimizer=torch.optim.Adam, learning_rate=0.001, weight_decay=0) if torch.cuda.is_available(): torch.cuda.current_device() self.model.cuda() self.logger = Logger(model=self.model, project_root_dir=self.dataset.project_root_dir, image_type=self.image_type) self.epochs = 2 def fit(self): # get scale and center parameters scale_params_low, scale_params_high = self.dataset.load_params( param_type="scale_params") mean_image_low, mean_image_high = self.dataset.load_params( param_type="mean_images") # currently for one image: ''' self.dataset.batch_names(batch_size=5) X, Y = self.dataset.create_train_batches(self.dataset.train_batch_chunks[1]) print(X.shape) X = X[0,:,:] Y = Y[0,:,:] ''' # load validation set, normalize and parse into tensor input_tensor_val, target_tensor_val = self.dataset.scale_and_parse_to_tensor( batch_files=self.dataset.val_file_names, scale_params_low=scale_params_low, scale_params_high=scale_params_high, mean_image_low=mean_image_low, mean_image_high=mean_image_high) if torch.cuda.is_available(): input_tensor_val = input_tensor_val.cuda() target_tensor_val = target_tensor_val.cuda() for e in range(0, self.epochs): # separate names into random batches and shuffle every epoch self.dataset.batch_names(batch_size=32) # in self.batch_number is the number of batches in the training set for i in range(self.dataset.batch_number): input_tensor, target_tensor = self.dataset.scale_and_parse_to_tensor( batch_files=self.dataset.train_batch_chunks[i], scale_params_low=scale_params_low, scale_params_high=scale_params_high, mean_image_low=mean_image_low, mean_image_high=mean_image_high) if torch.cuda.is_available(): input_tensor = input_tensor.cuda() target_tensor = target_tensor.cuda() self.model.train_model(input_tensor, target_tensor, current_epoch=e) # calculate the validation loss and add to validation history self.logger.get_val_loss(val_in=input_tensor_val, val_target=target_tensor_val) # save model every x epochs if e % 25 == 0 or e == self.epochs - 1: self.logger.log( save_appendix='_epoch_' + str(e), current_epoch=e, epochs=self.epochs, mean_images=[mean_image_low, mean_image_high], scale_params=[scale_params_low, scale_params_high]) # how to undo the scaling: # unscaled_X = utils.scale_and_center_reverse(scale_center_X, # scale_params_low, mean_image_low, image_type = self.dataset.image_type) # unscaled_Y = utils.scale_and_center_reverse(scale_center_Y, scale_params_high, # mean_image_high, image_type=self.dataset.image_type) def predict(self): # self.model.predict() # see self.dataset.X_val and self.dataset.Y_val pass
class CNN_skipCo_trainer(object): def __init__(self): self.image_type = 'US' self.dataset = ProcessData(train_ratio=0.9, process_raw_data=False, do_augment=False, add_augment=False, do_flip=True, do_blur=True, do_deform=True, do_crop=True, image_type=self.image_type, get_scale_center=False, single_sample=True) self.model = deep_model.deep_model(criterion=nn.MSELoss(), optimizer=torch.optim.Adam, learning_rate=0.001, weight_decay=0) if torch.cuda.is_available(): torch.cuda.current_device() self.model.cuda() self.logger = Logger(model=self.model, project_root_dir=self.dataset.project_root_dir, image_type=self.image_type) self.epochs = 250 def fit(self, learning_rate, use_one_cycle=False): # get scale and center parameters scale_params_low, scale_params_high = self.dataset.load_params( param_type="scale_params") mean_image_low, mean_image_high = self.dataset.load_params( param_type="mean_images") # currently for one image: ''' self.dataset.batch_names(batch_size=5) X, Y = self.dataset.create_train_batches(self.dataset.train_batch_chunks[1]) print(X.shape) X = X[0,:,:] Y = Y[0,:,:] ''' # load validation set, normalize and parse into tensor input_tensor_val, target_tensor_val = self.dataset.scale_and_parse_to_tensor( batch_files=self.dataset.val_file_names, scale_params_low=scale_params_low, scale_params_high=scale_params_high, mean_image_low=mean_image_low, mean_image_high=mean_image_high) if torch.cuda.is_available(): input_tensor_val = input_tensor_val.cuda() target_tensor_val = target_tensor_val.cuda() if use_one_cycle: higher_rate = learning_rate lower_rate = 1 / 10 * higher_rate num_epochs = self.epochs up_num = int((num_epochs - 50) / 2) down_num = up_num ann_num = num_epochs - up_num - down_num lr_up = np.linspace(lower_rate, higher_rate, num=up_num) lr_down = np.linspace(higher_rate, lower_rate, num=down_num) lr_anihilating = np.linspace(lower_rate, 0, num=ann_num) learning_rates = np.append(np.append(lr_up, lr_down), lr_anihilating) else: self.model.set_learning_rate(learning_rate) for e in range(0, self.epochs): if use_one_cycle: lr = learning_rates[e] self.model.set_learning_rate(lr) # separate names into random batches and shuffle every epoch self.dataset.batch_names(batch_size=32) # in self.batch_number is the number of batches in the training set for i in range(self.dataset.batch_number): input_tensor, target_tensor = self.dataset.scale_and_parse_to_tensor( batch_files=self.dataset.train_batch_chunks[i], scale_params_low=scale_params_low, scale_params_high=scale_params_high, mean_image_low=mean_image_low, mean_image_high=mean_image_high) if torch.cuda.is_available(): input_tensor = input_tensor.cuda() target_tensor = target_tensor.cuda() self.model.train_model(input_tensor, target_tensor, current_epoch=e) # calculate the validation loss and add to validation history self.logger.get_val_loss(val_in=input_tensor_val, val_target=target_tensor_val) # save model every x epochs if e % 25 == 0 or e == self.epochs - 1: self.logger.log( save_appendix='_epoch_' + str(e), current_epoch=e, epochs=self.epochs, mean_images=[mean_image_low, mean_image_high], scale_params=[scale_params_low, scale_params_high]) # how to undo the scaling: # unscaled_X = utils.scale_and_center_reverse(scale_center_X, # scale_params_low, mean_image_low, image_type = self.dataset.image_type) # unscaled_Y = utils.scale_and_center_reverse(scale_center_Y, scale_params_high, # mean_image_high, image_type=self.dataset.image_type) def predict(self): # self.model.predict() # see self.dataset.X_val and self.dataset.Y_val pass def find_lr(self, init_value=1e-8, final_value=10., beta=0.98): """ learning rate finder. goes through multiple learning rates and does one forward pass with each and tracks the loss. it returns the learning rates and losses so one can make an image of the loss from which one can find a suitable learning rate. Pick the highest one on which the loss is still decreasing (so not the minimum) :param train_in: training data input :param target: training data target :param init_value: inital value which the learning rate start with. init_value < final_value. Default: 1e-8 :param final_value: last value of the learning rate. Default: 10. :param beta: used for smoothing the loss. Default: 0.98 :return: log_learning_rates, losses """ # get scale and center parameters scale_params_low, scale_params_high = self.dataset.load_params( param_type="scale_params") mean_image_low, mean_image_high = self.dataset.load_params( param_type="mean_images") import math print(len(self.dataset.train_file_names)) num = len(self.dataset.train_file_names) - 1 mult = (final_value / init_value)**(1 / num) lr = init_value self.model.optimizer.param_groups[0]['lr'] = lr avg_loss = 0. best_loss = 0. batch_num = 0 losses = [] log_lrs = [] #for i in range(1, train_in.shape[0]): self.dataset.batch_names(batch_size=2) # in self.batch_number is the number of batches in the training set print(self.dataset.batch_number) for i in range(self.dataset.batch_number): sys.stdout.write('\r current iteration : ' + str(i)) input_tensor, target_tensor = self.dataset.scale_and_parse_to_tensor( batch_files=self.dataset.val_file_names, scale_params_low=scale_params_low, scale_params_high=scale_params_high, mean_image_low=mean_image_low, mean_image_high=mean_image_high) if torch.cuda.is_available(): input_tensor = input_tensor.cuda() target_tensor = target_tensor.cuda() batch_num += 1 # As before, get the loss for this mini-batch of inputs/outputs self.model.optimizer.zero_grad() outputs = self.model.forward(input_tensor) loss = self.model.criterion(outputs, target_tensor) # Compute the smoothed loss avg_loss = beta * avg_loss + (1 - beta) * loss.item() smoothed_loss = avg_loss / (1 - beta**batch_num) # Stop if the loss is exploding if batch_num > 1 and smoothed_loss > 4 * best_loss: print('loss exploding') return log_lrs, losses # Record the best loss if smoothed_loss < best_loss or batch_num == 1: best_loss = smoothed_loss # Store the values losses.append(smoothed_loss) log_lrs.append(math.log10(lr)) # Do the SGD step loss.backward() self.model.optimizer.step() # Update the lr for the next step lr *= mult self.model.optimizer.param_groups[0]['lr'] = lr # Plot the results ''' lrs = 10 ** np.array(log_lrs) fig, ax = plt.subplots(1) ax.plot(lrs, losses) ax.set_xscale('log') ax.set_xlim((1e-8, 1)) ax.figure.show() ax.figure.savefig('learning_rate_finder.png') ''' return log_lrs, losses
def __init__(self, image_type, batch_size, log_period, epochs, data_type, train_ratio, process_raw_data, pro_and_augm_only_image_type, do_heavy_augment,do_augment, add_augment, do_rchannels,do_flip, do_blur, do_deform, do_crop,do_speckle_noise, trunc_points, get_scale_center, single_sample,do_scale_center, oa_do_scale_center_before_pca, trunc_points_before_pca, oa_do_pca,oa_pca_fit_ratio, oa_pca_num_components, height_channel_oa, use_regressed_oa, include_regression_error, add_f_test, only_f_test_in_target, channel_slice_oa, process_all_raw_folders, conv_channels,kernels, strides, model_name, input_size, output_channels, drop_probs, di_conv_channels, dilations, learning_rates, optimizer, criterion, hetero_mask_to_mask,hyper_no, input_ds_mask, input_ss_mask, ds_mask_channels, attention_mask, add_skip, pca_use_regress, add_skip_at_first, concatenate_skip): self.image_type = image_type self.batch_size = batch_size self.log_period = log_period self.epochs = epochs self.dataset = ProcessData(data_type=data_type, train_ratio=train_ratio, process_raw_data=process_raw_data, pro_and_augm_only_image_type=pro_and_augm_only_image_type, do_heavy_augment=do_heavy_augment, do_augment=do_augment, add_augment=add_augment, do_rchannels=do_rchannels, do_flip=do_flip, do_blur=do_blur, do_deform=do_deform, do_crop=do_crop, do_speckle_noise=do_speckle_noise,trunc_points=trunc_points, image_type=image_type, get_scale_center=get_scale_center, single_sample=single_sample, do_scale_center=do_scale_center, trunc_points_before_pca=trunc_points_before_pca, oa_do_scale_center_before_pca=oa_do_scale_center_before_pca, oa_do_pca=oa_do_pca, oa_pca_fit_ratio=oa_pca_fit_ratio, oa_pca_num_components=oa_pca_num_components, height_channel_oa=height_channel_oa, use_regressed_oa=use_regressed_oa, include_regression_error=include_regression_error, add_f_test=add_f_test, only_f_test_in_target=only_f_test_in_target, channel_slice_oa=channel_slice_oa, process_all_raw_folders=process_all_raw_folders, hetero_mask_to_mask=hetero_mask_to_mask, attention_mask=attention_mask, pca_use_regress=pca_use_regress) self.model_convdeconv = ConvDeconv(conv_channels=conv_channels, #input_ds_mask=input_ds_mask, #input_ss_mask=input_ss_mask, #ds_mask_channels=ds_mask_channels, #datatype=data_type, kernels=kernels, strides=strides, model_name=model_name, input_size=input_size, output_channels=output_channels, drop_probs=drop_probs, add_skip=add_skip, attention_mask=attention_mask, add_skip_at_first=add_skip_at_first, concatenate_skip=concatenate_skip) self.model_dilated = DilatedTranslator(conv_channels=di_conv_channels, dilations=dilations) # self.deformation_model = DeformationLearner(stride=3, kernel=3, padding=1) self.model = ImageTranslator([self.model_convdeconv]) # we need optimizer and loss here to not access anything from the model class self.model_params = self.model.get_parameters() self.optimizer = optimizer self.criterion = criterion self.model_file_path = self.model.model_file_name self.model_name = self.model.model_name if torch.cuda.is_available(): torch.cuda.current_device() self.model.cuda() # here now wrap the model in Data.Parallel class self.model = nn.DataParallel(self.model) self.learning_rates = learning_rates self.logger = Logger(model=self.model, project_root_dir=self.dataset.project_root_dir, image_type=self.image_type, dataset=self.dataset, batch_size=self.batch_size, epochs=self.epochs,learning_rates=self.learning_rates,hyper_no=hyper_no, model_file_path=self.model_file_path, model_name= self.model_name)