def run(self): """ Creates and runs training episode :param: :return: """ data_provider = DataProvider(self.config) hex_attr_df = data_provider.read_hex_bin_attributes() hex_distance_df = data_provider.read_hex_bin_distances() city_states = data_provider.read_city_states(self.city_states_filename) neighborhood = data_provider.read_neighborhood_data() popular_bins = data_provider.read_popular_hex_bins() num_episodes = self.config['RL_parameters']['num_episodes'] ind_episodes = self.config['RL_parameters']['ind_episodes'] exp_decay_multiplier = self.config['RL_parameters']['exp_decay_multiplier'] q_ind = None r_table = None xi_matrix = None best_episode = None best_model = {} progress_bar = tqdm(xrange(num_episodes)) for episode_id in progress_bar: progress_bar.set_description("Episode: {}".format(episode_id)) current_best = -1000000 # Create episode ind_exploration_factor = np.e ** (-1 * episode_id * exp_decay_multiplier / ind_episodes) episode = Episode(self.config, episode_id, ind_exploration_factor, hex_attr_df, hex_distance_df, city_states, neighborhood, popular_bins, q_ind, r_table, xi_matrix) # Run episode tables = episode.run() q_ind = tables['q_ind'] r_table = tables['r_table'] xi_matrix = tables['xi_matrix'] episode_tracker = tables['episode_tracker'] # Uncomment for logging if running a job, comment during experiments # otherwise it leads to insanely huge logging output which is useless # self.logger.info(""" # Expt: {} Episode: {} Earnings: {} # Pax rides: {} Relocation rides: {} Unmet demand: {} # """.format(self.expt_name, episode_id, # episode_tracker.gross_earnings, # episode_tracker.successful_waits, # episode_tracker.relocation_rides, # episode_tracker.unmet_demand)) # self.logger.info("----------------------------------") self.training_tracker.update_RL_tracker( episode_id, episode_tracker.gross_earnings, episode_tracker.successful_waits, episode_tracker.unsuccessful_waits, episode_tracker.unmet_demand, episode_tracker.relocation_rides, episode_tracker.DET, episode_tracker.DPRT, episode_tracker.DWT, episode_tracker.DRT, episode_tracker.DCT) # Keep track of the best episode if self.objective == 'revenue': if episode_tracker.gross_earnings >= current_best: best_episode = episode_tracker current_best = best_episode.gross_earnings else: # self.objective == 'pickups': if episode_tracker.successful_waits >= current_best: best_episode = episode_tracker current_best = episode_tracker.successful_waits # Keep track of the best model best_model['ind_exploration_factor'] = ind_exploration_factor best_model['config'] = self.config best_model['q_ind'] = q_ind best_model['r_table'] = r_table best_model['xi_matrix'] = xi_matrix best_model['training_tracker'] = self.training_tracker # After finishing training self.logger.info("Expt: {} Earnings: {} Met Demand: {} Unmet Demand: {}".format(self.expt_name, best_episode.gross_earnings, best_episode.successful_waits, best_episode.unmet_demand)) return best_episode, best_model, self.training_tracker
def run(self): """ Creates and runs training episode :param: :return: """ data_provider = DataProvider(self.config) hex_attr_df = data_provider.read_hex_bin_attributes() hex_distance_df = data_provider.read_hex_bin_distances() city_states = data_provider.read_city_states( self.test_parameters['city_states_filename']) model = data_provider.read_model( self.test_parameters['model_filename']) neighborhood = data_provider.read_neighborhood_data() popular_bins = data_provider.read_popular_hex_bins() q_ind = model['q_ind'] r_table = model['r_table'] xi_matrix = model['xi_matrix'] episode_id = 0 # Create episode ind_exploration_factor = 0.0 episode = Episode(self.config, episode_id, ind_exploration_factor, hex_attr_df, hex_distance_df, city_states, neighborhood, popular_bins, q_ind, r_table, xi_matrix, True) # Run episode tables = episode.run() q_ind = tables['q_ind'] r_table = tables['r_table'] xi_matrix = tables['xi_matrix'] episode_tracker = tables['episode_tracker'] self.testing_tracker.update_RL_tracker( 0, episode_tracker.gross_earnings, episode_tracker.successful_waits, episode_tracker.unsuccessful_waits, episode_tracker.unmet_demand, episode_tracker.relocation_rides, episode_tracker.DET, episode_tracker.DPRT, episode_tracker.DWT, episode_tracker.DRT, episode_tracker.DCT) self.logger.info(""" Expt: {} Earnings: {} Model: {} Test day: {} Num drivers: {} Pax rides: {} Relocation rides: {} Unmet demand: {} """.format( self.expt_name, episode_tracker.gross_earnings, self.test_parameters['model_filename'], self.test_parameters['city_states_filename'], self.config['RL_parameters']['num_drivers'], episode_tracker.successful_waits, episode_tracker.relocation_rides, episode_tracker.unmet_demand)) self.logger.info("----------------------------------") return self.testing_tracker