示例#1
0
def main():
    set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False)
    # Prepare data
    datasets = data[args.dataset]
    print(args)
    train_target_file_path = datasets[args.tgt]
    train_source_file_path = datasets[args.src]
    batch_size = 16
    train_source_loader = load_images(train_source_file_path,
                                      batch_size=batch_size,
                                      resize_size=256,
                                      is_train=True,
                                      crop_size=224,
                                      worker_init=gen_init_fn(GLOBAL_SEED),
                                      prefix=args.prefix)
    train_target_loader = load_images(train_target_file_path,
                                      batch_size=batch_size,
                                      resize_size=256,
                                      is_train=True,
                                      crop_size=224,
                                      worker_init=gen_init_fn(GLOBAL_SEED),
                                      prefix=args.prefix)

    writer = SummaryWriter('%s/%s' % (args.logdir, args.key))
    # Init model
    target_model = torch.load(args.saved_model)
    # Evaluate model
    vis_tsne(target_model, [train_source_loader, train_target_loader], writer)

    print('Finish visualization.')
示例#2
0
def main():
    set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False)
    # Prepare data
    datasets = data[args.dataset]
    K = num_class[args.dataset]
    print(args)
    target_dataset = datasets[args.tgt]
    train_target_file_path = target_dataset
    batch_size = 16
    train_target_loader = load_images(train_target_file_path,
                                      batch_size=batch_size,
                                      resize_size=256,
                                      is_train=True,
                                      crop_size=224,
                                      worker_init=gen_init_fn(GLOBAL_SEED),
                                      prefix=args.prefix)
    writer = SummaryWriter('%s/%s' % (args.logdir, args.key))
    # Init model
    target_model = torch.load(args.saved_model)
    # Evaluate model
    result = evaluate_classification_perclass(target_model, K,
                                              train_target_loader)
    file_path = 'distance_test/classaccu_%s.txt' % args.key
    with open(file_path, 'w') as result_file:
        result_file.writelines(result)
    print('write result into %s.' % file_path)
示例#3
0
def main():
    set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False)
    # Prepare data
    datasets = data[args.dataset]
    K = num_class[args.dataset]
    print(args)
    train_target_file_path = datasets[args.tgt]
    train_source_file_path = datasets[args.src]
    batch_size = 16
    train_source_loader = load_images(train_source_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix)
    train_target_loader = load_images(train_target_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix)
    writer = SummaryWriter('%s/%s' % (args.logdir, args.key))
    # Init model
    target_model = torch.load(args.saved_model)
    model_instance = Distance(g_net=target_model.g_net, class_num=K, alpha=args.alpha, beta=args.beta, gamma=args.gamma)
    # Evaluate model
    result = evaluate_distance(model_instance, train_source_loader, train_target_loader)
    file_path = 'distance_test/%s.txt' % args.key
    with open(file_path, 'w') as result_file:
        result_file.writelines(result)
    print('write result into %s.' % file_path)
def main():
    set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False)
    # Prepare data
    datasets = data[args.dataset]
    K = num_class[args.dataset]
    print(args)
    train_target_file_path = datasets[args.tgt]
    train_source_file_path = datasets[args.src]
    batch_size = 16
    train_source_loader = load_images(train_source_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix)
    train_target_loader = load_images(train_target_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=gen_init_fn(GLOBAL_SEED), prefix=args.prefix)
    
    writer = SummaryWriter('%s/%s' % (args.logdir, args.key))
    # Init model
    model_instance = ADis(class_num=K, alpha=args.alpha, beta=args.beta, gamma=args.gamma)
    parameter_list = model_instance.get_parameter_list()
    optimizer_list = []
    for parameter in parameter_list:
        optimizer = optim.SGD(parameter, lr=args.lr, momentum=0.9, weight_decay=0.0005, nesterov=True)
        optimizer_list.append(optimizer)
    scheduler = INVScheduler(gamma=0.001, power=0.75, decay_rate=0.0002, init_lr=args.lr)
    train_da_evaluator(model_instance, train_source_loader, train_target_loader, num_iterations=100000, optimizer_list=optimizer_list, lr_scheduler=scheduler, writer=writer)
示例#5
0
def main():
    set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False)
    # Prepare data
    datasets = data[args.dataset]
    K = num_class[args.dataset]
    print(args)
    train_target_file_path = datasets[args.tgt]
    train_source_file_path = datasets[args.src]
    test_file_path = datasets[args.tgttest]
    model_path = 'results/final_model_%s.pkl' % args.key
    batch_size = 48
    train_source_loader = load_images(train_source_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=worker_init_fn, prefix=args.prefix)
    train_target_loader = load_images(train_target_file_path, batch_size=batch_size, resize_size=256, is_train=True, crop_size=224, worker_init=worker_init_fn, prefix=args.prefix)
    test_target_loader = load_images(test_file_path, batch_size=batch_size, resize_size=256, is_train=False, crop_size=224, worker_init=worker_init_fn, prefix=args.prefix)
    
    writer = SummaryWriter('%s/%s' % (args.logdir, args.key))
    # Init model
    if args.resume == 1:
        model_instance = torch.load(args.saved_model)
        model_instance.alpha = args.alpha
        model_instance.beta = args.beta
        model_instance.gmma = args.gamma
    else:
        model_instance = DANN(class_num=K, alpha=args.alpha, beta=args.beta, gamma=args.gamma)
    start_iter = args.start_iter
    parameter_list = model_instance.get_parameter_list()
    optimizer_list = []
    for parameter in parameter_list:
        optimizer = optim.SGD(parameter, lr=args.lr, momentum=0.9, weight_decay=0.0005, nesterov=True)
        optimizer_list.append(optimizer)
    scheduler = INVScheduler(gamma=0.001, power=0.75, decay_rate=0.0005, init_lr=args.lr)
    train_da(model_instance, train_source_loader, train_target_loader, test_target_loader, num_iterations=100000, optimizer_list=optimizer_list, lr_scheduler=scheduler, writer=writer, key=args.key, do_eval=True, model_dir='results', start_iter=start_iter)
    # Evaluate model
    print("All training is finished.")
    eval_result = evaluate_classification(model_instance, test_target_loader)
    print(eval_result)
    # Save model
    torch.save(model_instance, model_path)
示例#6
0
def main():
    set_randomness(GLOBAL_SEED, deterministic=True, benchmark=False)
    # Prepare data
    datasets = data[args.dataset]
    K = num_class[args.dataset]
    print(args)
    train_target_file_path = datasets[args.tgt]
    train_source_file_path = datasets[args.src]
    test_file_path = datasets[args.tgttest]
    model_path = 'results/final_model_%s.pkl' % args.key
    batch_size = 32
    train_source_loader = load_images(train_source_file_path,
                                      batch_size=batch_size,
                                      resize_size=256,
                                      is_train=True,
                                      crop_size=224,
                                      worker_init=gen_init_fn(GLOBAL_SEED),
                                      prefix=args.prefix)
    train_target_loader = load_images(train_target_file_path,
                                      batch_size=batch_size,
                                      resize_size=256,
                                      is_train=True,
                                      crop_size=224,
                                      worker_init=gen_init_fn(GLOBAL_SEED),
                                      prefix=args.prefix)
    test_source_loader = load_images(train_source_file_path,
                                     batch_size=batch_size,
                                     resize_size=256,
                                     is_train=False,
                                     crop_size=224,
                                     worker_init=gen_init_fn(GLOBAL_SEED),
                                     prefix=args.prefix)
    test_target_loader = load_images(test_file_path,
                                     batch_size=batch_size,
                                     resize_size=256,
                                     is_train=False,
                                     crop_size=224,
                                     worker_init=gen_init_fn(GLOBAL_SEED),
                                     prefix=args.prefix)

    writer = SummaryWriter('%s/%s' % (args.logdir, args.key))
    # Init model
    target_model = torch.load(args.saved_model)
    model_instance = LambdaTest(g_net=target_model.g_net,
                                class_num=K,
                                alpha=args.alpha,
                                beta=args.beta,
                                gamma=args.gamma)
    parameter_list = model_instance.get_parameter_list()
    optimizer_list = []
    for parameter in parameter_list:
        optimizer = optim.SGD(parameter,
                              lr=args.lr,
                              momentum=0.9,
                              weight_decay=0.0005,
                              nesterov=True)
        optimizer_list.append(optimizer)
    scheduler = INVScheduler(gamma=0.001,
                             power=0.75,
                             decay_rate=0.0005,
                             init_lr=args.lr)
    # Train model
    train_da(model_instance,
             train_source_loader,
             train_target_loader,
             test_target_loader,
             num_iterations=50000,
             optimizer_list=optimizer_list,
             lr_scheduler=scheduler,
             writer=writer,
             key=args.key,
             do_eval=False,
             model_dir='results')
    # Evaluate model
    print("All training is finished.")
    ori_train_state = model_instance.is_train
    model_instance.set_train(False)
    src_eval_result = evaluate_classification_by_net(
        model_instance.src_predict, test_source_loader)
    tgt_eval_result = evaluate_classification_by_net(
        model_instance.tgt_predict, test_target_loader)
    model_instance.set_train(ori_train_state)
    print('src:')
    print(src_eval_result)
    print('tgt:')
    print(tgt_eval_result)
    lambda_value = (1 - src_eval_result['accuracy'] + 1 -
                    tgt_eval_result['accuracy']) / 2
    print('lambda value: %s' % lambda_value)
    # Save model
    torch.save(model_instance, model_path)