示例#1
0
def train(cfg):
    model = build_model(cfg)
    # model.fix_bn()
    model = nn.DataParallel(model)
    torch.backends.cudnn.benchmark = True
    optimizer = make_optimizer(cfg, model)
    criterion = make_criterion(cfg)
    scheduler = make_lr_scheduler(cfg, optimizer)
    metrics = make_metrics(cfg)
    train_loader = make_dataloader(cfg, is_train=True)
    val_loader = make_dataloader(cfg, is_train=False)

    cfg.TOOLS.image_n = 3
    #image_3_dataloader = make_inference_dataloader(cfg=cfg)
    image_3_dataloader = None
    cfg.TOOLS.image_n = 4
    #image_4_dataloader = make_inference_dataloader(cfg=cfg)
    image_4_dataloader = None

    do_train(cfg,
             model=model,
             train_loader=train_loader,
             val_loader=val_loader,
             optimizer=optimizer,
             scheduler=scheduler,
             loss_fn=criterion,
             metrics=metrics,
             image_3_dataloader=image_3_dataloader,
             image_4_dataloader=image_4_dataloader)
    free_device_ids = get_free_device_ids()
    max_num_devices = cfg['max_num_devices']
    if len(free_device_ids) >= max_num_devices:
        free_device_ids = free_device_ids[:max_num_devices]
    # print(free_device_ids)

    master_device = free_device_ids[0]
    model = nn.DataParallel(model,
                            device_ids=free_device_ids).cuda(master_device)

    # save_dir
    curr_time = datetime.datetime.now()
    time_str = datetime.datetime.strftime(curr_time, '%Y%m%d_')
    model_tag = (os.path.split(arg['load_path'])[1]).split('.')[0]
    save_dir = os.path.join(r'../exp/', time_str + model_tag)
    if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
    print("Save_dir :", save_dir)

    dataloader = make_dataloader(cfg['query_pipeline'])
    dict_query = ADD_TTA_inference_extract_features(cfg,
                                                    model,
                                                    dataloader,
                                                    device_ids=free_device_ids)

    dict_to_file(os.path.join(save_dir, "query.json"), dict_query)

    dataloader = make_dataloader(cfg['gallery_pipeline'])
    dict_gallery = ADD_TTA_inference_extract_features(
        cfg, model, dataloader, device_ids=free_device_ids)
    dict_to_file(os.path.join(save_dir, "gallery.json"), dict_gallery)
if __name__ == "__main__":
    # 若更新了load_arg函数,需要对应更新merage_from_arg()
    arg = vars(load_arg())
    # 待修改
    config_file = arg["CONFIG_FILE"]
    config_file = config_file.replace("../","").replace(".py","").replace('/','.')

    exec(r"from {} import config as cfg".format(config_file))
    # if arg['MODEL.LOAD_PATH'] != None: #优先级:arg传入命令 >model中存的cfg > config_file
    #     cfg = torch.load(arg['MODEL.LOAD_PATH'])['cfg']
    cfg = merage_from_arg(cfg,arg)
    print(cfg)
    cfg_copy = copy.deepcopy(cfg)

    train_dataloader = make_dataloader(cfg['train_pipeline'])
    
    
    curr_time = datetime.datetime.now()
    time_str = datetime.datetime.strftime(curr_time,'%Y%m%d_')
    save_dir = os.path.join(cfg['save_dir'],time_str+cfg['tag'])
    log_dir = os.path.join(cfg['log_dir'],"log_"+time_str+cfg['tag'])
    cfg['save_dir'] = save_dir
    cfg['log_dir'] = log_dir
    if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
    if not os.path.isdir(log_dir):
        os.makedirs(log_dir)
    print("Save_dir :",save_dir)
    print("Log_dir :", log_dir)
from PIL import ImageFile
from PIL import Image

from torch.utils.data import DataLoader
from models.model import Generator, Discriminator
from utils.utils import calc_optical_flow, weights_init, make_G_input, make_D_input, save_video
from options.train_options import TrainOptions
from data.dataloader import make_dataloader

ImageFile.LOAD_TRUNCATED_IMAGES = True
opt = TrainOptions().parse()
localtime = time.asctime(time.localtime(time.time()))

start_time = time.time()

train_loader, valid_loader = make_dataloader(opt)

# Decide which device we want to run on
device = torch.device("cuda:0" if (
    torch.cuda.is_available() and opt.ngpu > 0) else "cpu")

# Create the generator
netG = Generator().to(device)
if (device.type == 'cuda') and (opt.ngpu > 1):
    netG = nn.DataParallel(netG, list(range(opt.ngpu)))
netG.apply(weights_init)
print(netG)

# Create the Discriminator
netD = Discriminator().to(device)
if (device.type == 'cuda') and (opt.ngpu > 1):
    # print(free_device_ids)

    master_device = free_device_ids[0]
    model = nn.DataParallel(model,
                            device_ids=free_device_ids).cuda(master_device)

    # save_dir
    curr_time = datetime.datetime.now()
    time_str = datetime.datetime.strftime(curr_time, '%Y%m%d_')
    model_tag = (os.path.split(arg['load_path'])[1]).split('.')[0]
    save_dir = os.path.join(r'../exp/', time_str + model_tag)
    if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
    print("Save_dir :", save_dir)

    image_3_pipeline = make_dataloader(cfg['test_image3_pipeline'])
    image_3_predict = tta_forward(
        image_3_pipeline,
        model,
        device=master_device,
        png_shape=cfg['test_image3_pipeline']['image_shape'])
    pil_image = Image.fromarray(image_3_predict)
    pil_image.save(os.path.join(save_dir, "image_" + str(3) + "_predict.png"))
    del image_3_pipeline, image_3_predict

    image_4_pipeline = make_dataloader(cfg['test_image4_pipeline'])
    image_4_predict = tta_forward(
        image_4_pipeline,
        model,
        device=master_device,
        png_shape=cfg['test_image4_pipeline']['image_shape'])
示例#6
0
if __name__ == "__main__":
    # 若更新了load_arg函数,需要对应更新merage_from_arg()
    arg = vars(load_arg())
    if arg['MODEL.LOAD_PATH'] != None:  #优先级:arg传入命令 >model中存的cfg > config_file
        cfg = torch.load(arg['MODEL.LOAD_PATH'])['cfg']
    # 待修改
    config_file = arg["CONFIG_FILE"]
    config_file = config_file.replace("../", "").replace(".py",
                                                         "").replace('/', '.')
    exec(r"from {} import config as cfg".format(config_file))

    cfg = merage_from_arg(cfg, arg)

    model = bulid_model(cfg['model'], cfg['pretrain'])
    # 默认开启多GPU
    if cfg['multi_gpu']:
        device_ids = cfg['device_ids']
        model = nn.DataParallel(model, device_ids=device_ids)

    curr_time = datetime.datetime.now()
    time_str = datetime.datetime.strftime(curr_time, '%Y%m%d_')
    model_tag = (os.path.split(arg['MODEL.LOAD_PATH'])[1]).split('.')[0]
    save_dir = os.path.join(r'../exp/', time_str + model_tag)

    if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
    print("Save_dir :", save_dir)
    cfg['save_dir'] = save_dir
    dataloader = make_dataloader(cfg['test_pipeline'])
    inference_forward(cfg, model, dataloader, tta_flag=True)
    zipDir(save_dir, save_dir + ".zip")  # 压缩至根目录