if __name__ == "__main__": H5_dico = read_data_header() Males = H5PY_RW() Males.open_h5_dataset('test.h5py', subset=males_keys(H5_dico)) Males.set_chunk(config.chunk_size) Males.shuffle() print 'Male voices loaded: ', Males.length(), ' items' Females = H5PY_RW() Females.open_h5_dataset('test.h5py', subset=females_keys(H5_dico)) Females.set_chunk(config.chunk_size) Females.shuffle() print 'Female voices loaded: ', Females.length(), ' items' Mixer = Mixer([Males, Females]) das_model = DAS(S=len(Mixer.get_labels()), T=config.chunk_size) das_model.init() for i in range(100): print 'Step #', i X, Y, Ind = Mixer.get_batch(64) x_mixture = [] for x in X: _, x_recons = istft_(x.T) x_mixture.append(x_recons) X = X[:, :, :128]
import numpy as np import tensorflow as tf import config import os H5_dic = read_metadata() chunk_size = 512*40 males = H5PY_RW('test_raw.h5py', subset = males_keys(H5_dic)) fem = H5PY_RW('test_raw.h5py', subset = females_keys(H5_dic)) print 'Data with', len(H5_dic), 'male and female speakers' print males.length(), 'elements' print fem.length(), 'elements' mixed_data = Mixer([males, fem], chunk_size= chunk_size, with_mask=False, with_inputs=True) #### #### PREVIOUS MODEL CONFIG #### N = 256 max_pool = 256 batch_size = 32 learning_rate = 0.01 config_model = {} config_model["type"] = "DPCL_train_front" config_model["batch_size"] = batch_size
file = 'test_raw_16k.h5py' H5_dic = read_metadata() chunk_size = 512 * 10 males = H5PY_RW(file, subset=males_keys(H5_dic)).set_chunk(chunk_size).shuffle() fem = H5PY_RW(file, subset=females_keys(H5_dic)).set_chunk(chunk_size).shuffle() print 'Data with', len(H5_dic), 'male and female speakers' # Mixing the dataset from data.dataset import Mixer mixed_data = Mixer([males, fem], with_mask=False, with_inputs=True) # Training set selection mixed_data.select_split(0) # Model pretrained loading N = 256 max_pool = 128 batch_size = 8 learning_rate = 0.001 config_model = {} config_model["type"] = "pretraining" config_model["batch_size"] = batch_size
import config import os H5_dic = read_metadata() chunk_size = 512 * 40 males = H5PY_RW('test_raw.h5py', subset=males_keys(H5_dic)) fem = H5PY_RW('test_raw.h5py', subset=females_keys(H5_dic)) print 'Data with', len(H5_dic), 'male and female speakers' print males.length(), 'elements' print fem.length(), 'elements' mixed_data = Mixer([males, fem], chunk_size=chunk_size, with_mask=False, with_inputs=True, shuffling=True) #### #### PREVIOUS MODEL CONFIG #### N = 256 max_pool = 256 batch_size = 16 learning_rate = 0.01 config_model = {} config_model["type"] = "pretraining"
H5_dico = read_data_header() males = H5PY_RW() males.open_h5_dataset('test_raw.h5py', subset=males_keys(H5_dico)) males.set_chunk(5 * 4 * 512) males.shuffle() print 'Male voices loaded: ', males.length(), ' items' fem = H5PY_RW() fem.open_h5_dataset('test_raw.h5py', subset=females_keys(H5_dico)) fem.set_chunk(5 * 4 * 512) fem.shuffle() print 'Female voices loaded: ', fem.length(), ' items' Mixer = Mixer([males, fem], with_mask=False, with_inputs=True) adapt_model = Adapt.load('jolly-firefly-9628', pretraining=False, separator=DPCL) # adapt_model.init() print 'Model DAS created' testVar = raw_input("Model loaded : Press Enter") cost_valid_min = 1e10 Mixer.select_split(0) learning_rate = 0.01 for i in range(config.max_iterations): X_in, X_mix, Ind = Mixer.get_batch(1)