def test_continents_not_normalised(): p = GeoPickler('', 'out_dir') data_dict = {} data_dict['A_DIV'] = (np.random.randn(9, 18) * 255).astype(np.int8) data_dict['A_cont'] = (np.random.randn(9, 18) * 255).astype(np.int8) old_max = np.max(data_dict['A_cont'].ravel()) old_min = np.min(data_dict['A_cont'].ravel()) p.normalise_continuous_data(data_dict) assert (np.max(data_dict['A_cont'].ravel()) == old_max) assert (np.min(data_dict['A_cont'].ravel()) == old_min) non_zero = np.where(data_dict['A_cont'] > 0) zero = np.where(data_dict['A_cont'] <= 0) assert (len(zero) > 0) p.process_continents(data_dict) assert (np.max(data_dict['cont'].ravel()) == 1) assert (np.min(data_dict['cont'].ravel()) == 0) assert ((data_dict['cont'][non_zero] == 1).all()) assert ((data_dict['cont'][zero] == 0).all())
def test_normalises_continuous_data(fake_geo_data): dataroot, _, _, _ = fake_geo_data p = GeoPickler(dataroot) p.collect_all() p.group_by_series() data_dict = p.get_data_dict(0, 0) p.normalise_continuous_data(data_dict) assert (np.max(data_dict['A_DIV'].ravel()) == 1.0) assert (np.min(data_dict['A_DIV'].ravel()) == -1.0) assert (np.max(data_dict['A_Vx'].ravel()) == 1.0) assert (np.min(data_dict['A_Vx'].ravel()) == -1.0) assert (np.max(data_dict['A_Vy'].ravel()) == 1.0) assert (np.min(data_dict['A_Vy'].ravel()) == -1.0)