示例#1
0
def evaluate_importance(model_data: ModelData, importance_type: ImportanceType, importance_calculation: ImportanceCalculation):
    model_data.reload_model()
    importance_handler: ImportanceEvaluator = ImportanceEvaluator(model_data)
    importance_handler.setup(importance_type, importance_calculation)
    (x_train, y_train), (x_test, y_test), input_shape, num_classes = get_prepared_data(model_data.get_class_selection())
    importance_handler.set_train_and_test_data(x_train, y_train, x_test, y_test)
    importance_handler.create_evaluation_data(10)
示例#2
0
def create_importance_data(model_data: ModelData, importance_type: ImportanceType):
    pn = ProcessedNetwork(model_data=model_data)
    pn.generate_importance_data("mnist/mnist_train_split%s" % split_suffix,
                                "mnist/mnist_test_split%s" % split_suffix,
                                importance_type)
    model_data.store_model_data()
    model_data.save_data()
示例#3
0
def calculate_performance_of_model(model_data: ModelData):
    (x_train, y_train), (x_test, y_test), input_shape, num_classes = get_prepared_data()

    logging.info("Train examples: %i" % x_train.shape[0])
    logging.info("Test examples: %i" % x_test.shape[0])

    model_data.reload_model()
    model_data.model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(0.001),
                             metrics=["accuracy"])

    model_data = evaluate_model(model_data, x_train, y_train, x_test, y_test)
    return model_data
示例#4
0
def evaluate_model(model_data: ModelData, x_train: Any, y_train: Any, x_test: Any, y_test: Any) \
        -> ModelData:
    train_score = model_data.model.evaluate(x_train, y_train, verbose=0)
    test_score = model_data.model.evaluate(x_test, y_test, verbose=0)
    logging.info("Train loss: %f, Train accuracy: %f, Test loss: %f, Test accuracy: %f" % (
        train_score[0], train_score[1], test_score[0], test_score[1]))

    c_y_test = np.argmax(y_test, axis=1)
    prediction_test = model_data.model.predict_classes(x_test)
    c_report: any = classification_report(c_y_test, prediction_test, output_dict=True)
    model_data.set_initial_performance(test_score[0], test_score[1], train_score[0], train_score[1], c_report)

    return model_data
示例#5
0
def create(name: str, batch_size: int, epochs: int, layer_data: List[int], learning_rate: float = 0.001,
           regularized: bool = False, train_type: ModelTrainType = ModelTrainType.BALANCED, main_class: int = None,
           other_class_percentage: float = None, class_selection: List[int] = None) -> ModelData:
    logging.info("Create MNIST neural network model with training type \"%s\"." % train_type.name)

    if train_type is not ModelTrainType.UNBALANCED:
        (x_train, y_train), (x_test, y_test), input_shape, num_classes = get_prepared_data(class_selection)
    else:
        (x_train, y_train), (x_test, y_test), input_shape, num_classes = get_unbalance_data(main_class,
                                                                                            other_class_percentage,
                                                                                            class_selection)
    logging.info("Train examples: %i" % x_train.shape[0])
    logging.info("Test examples: %i" % x_test.shape[0])

    if class_selection is not None:
        num_classes = len(class_selection)

    model: Model = build_mnist_model(layer_data, num_classes, input_shape, learning_rate, regularized)
    if train_type is not ModelTrainType.UNTRAINED:
        model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))

    model_description: str = generate_model_description(batch_size, epochs, model.layers, learning_rate)
    model_layer_nodes: List[int] = [input_shape[0]]
    model_layer_nodes.extend(layer_data)
    model_layer_nodes.append(num_classes)
    model_data: ModelData = ModelData(name, model_description, model)
    model_data.set_parameter(batch_size, epochs, model_layer_nodes, learning_rate, x_train.shape[0], x_test.shape[0])
    model_data = evaluate_model(model_data, x_train, y_train, x_test, y_test)
    model_data.set_class_selection(class_selection)
    model_data.save_model()
    model_data.store_model_data()

    return model_data
示例#6
0
    def __init__(self, model_data: ModelData):
        self.model_data: ModelData = model_data
        self.importance_type: ImportanceType = ImportanceType(
            model_data.get_importance_type())
        self.importance_calculation: ImportanceCalculation = ImportanceCalculation.BNN_EDGE
        self.relevant_classes: List[int] or None = None

        self.x_train = None
        self.y_train = None
        self.x_test = None
        self.y_test = None
示例#7
0
    def __init__(self, model_data: ModelData, store_path: str = None):
        self.model_data: ModelData = model_data
        self.name: str = "Undefined"
        self.num_classes: int = -1
        self.path: str = store_path if model_data is None else model_data.get_path(
        )
        self.original_name: str = None if model_data is None else model_data.name

        self.model_data.reload_model()
        self.architecture_data: List[int] = []
        self.node_importance_value: List[List[np.array]] = []
        self.edge_importance_value: List[np.array] = []
        self.edge_importance_set: bool = False
        for i, layer in enumerate(model_data.model.layers):
            self.architecture_data.append(layer.output_shape[1])
            if i is not 0:
                self.node_importance_value.append([])
                self.edge_importance_value.append(None)
            if i is len(model_data.model.layers) - 1:
                self.num_classes = layer.output_shape[1]

        self.importance_type: ImportanceType = ImportanceType(0)
from data.mnist_data_handler import get_prepared_data
from data.model_data import ModelData
from evaluation.evaluator import ImportanceEvaluator
from utility.log_handling import setup_logger

setup_logger("sample_evaluation")

name: str = "default_all"
model_data: ModelData = ModelData(name)
model_data.reload_model()
importance_handler: ImportanceEvaluator = ImportanceEvaluator(model_data)
importance_handler.setup()
(x_train, y_train), (x_test, y_test), input_shape, num_classes = get_prepared_data(model_data.get_class_selection())
importance_handler.set_train_and_test_data(x_train, y_train, x_test, y_test)
importance_handler.create_evaluation_data(10)