if args.dataset_type == "Avenue_rain": for single_dir in train_folder: if not os.path.exists(single_dir): rain_type = single_dir.strip().split('frames/')[1].strip().split( "_")[0] print( "creating training images with augmentation %s and rain level 0.70" % rain_type) aug_data.save_avenue_rain_or_bright(args.dataset_path, rain_type, True, "training", bright_space=0.7) frame_trans = data_utils.give_frame_trans(args.dataset_type, [args.h, args.w]) train_dataset = data_utils.DataLoader(train_folder, frame_trans, time_step=args.t_length - 1, num_pred=1) test_dataset = data_utils.DataLoader(test_folder, frame_trans, time_step=args.t_length - 1, num_pred=1) train_batch = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, drop_last=True)
args = parser.parse_args() torch.manual_seed(2020) torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # the path of each dataset s_train, s_test = data_utils.give_data_folder(args.source_dataset, args.dataset_path) t_train, t_test = data_utils.give_data_folder(args.target_dataset, args.dataset_path) # prepare image transform s_frame_trans = data_utils.give_frame_trans(args.source_dataset, [args.h, args.w]) t_frame_trans = data_utils.give_frame_trans(args.target_dataset, [args.h, args.w]) # prepare dataset # s_test_label = np.load(args.source_test_label_path, allow_pickle=True) t_test_label = np.load(args.target_test_label_path, allow_pickle=True) s_train_dataset = data_utils.DataLoader(s_train, s_frame_trans, None, True, time_step=args.t_length - 1, num_pred=1, video_start=1, video_end=5)