示例#1
0
def run_model(name, learning_rate, batch_size, epoch):
    
    #make model
    sess = tf.Session()
    md = models.Model(sess, name, FLAGS)

    #data preprocessing
    dp = utils.preprocess(FLAGS)
    x_data, y_data, x_test, y_test = dp.Mnist2data()
    
    #initialize
    sess.run(tf.global_variables_initializer())

    #training
    for ep in range(epoch):
        avg_cost = 0
        total_batches = int(x_data.shape[0]/batch_size)
        #print(int(x_data.shape[0]), total_batches, batch_size)

        for i in range(total_batches):
            x,y = x_data[i*batch_size:i*batch_size+batch_size], y_data[i*batch_size:i*batch_size+batch_size]
            cost, _ = md.train(x,y)
            avg_cost += cost/batch_size

        print('[*] epoch:', '%04d' % (ep + 1), ', cost =', '{:.9f}'.format(avg_cost))
    print("[*] learning Finishied!")

    #testset predict
    print('Accuracy:', md.get_accuracy(x_test, y_test))
    return True
示例#2
0
    def _load_from_disk(self, image_files, states, outputs):

        embnet_images, embnet_states, embnet_outputs = [], [], []
        for i in range(self.support_query_size):

            images, emb_states, emb_outputs = self.data_sequencer.load(
                image_files[i], states[i], outputs[i])
            # images will be of shape (sequence, w, h, 3)
            embnet_images.append(images)
            embnet_states.append(emb_states)
            embnet_outputs.append(emb_outputs)

        embed_images = tf.stack(embnet_images)
        embnet_states = tf.stack(embnet_states)
        embnet_outputs = tf.stack(embnet_outputs)

        embnet_states.set_shape(
            (self.support_query_size, self.data_sequencer.frames, None))
        embnet_outputs.set_shape(
            (self.support_query_size, self.data_sequencer.frames, None))

        # Grab a random timestep in one of the support and query trajectories
        ctrnet_timestep = tf.random_uniform(
            (2, ), 0, self.dataset.time_horizon, tf.int32)
        # The first should be a support and the last should be a query
        ctrnet_images = [
            utils.tf_load_image(image_files[0], ctrnet_timestep[0]),
            utils.tf_load_image(image_files[-1], ctrnet_timestep[1])
        ]
        ctrnet_states = [
            states[0][ctrnet_timestep[0]], states[-1][ctrnet_timestep[1]]
        ]
        ctrnet_outputs = [
            outputs[0][ctrnet_timestep[0]], outputs[-1][ctrnet_timestep[1]]
        ]

        ctrnet_images = tf.stack(ctrnet_images)
        ctrnet_states = tf.stack(ctrnet_states)
        ctrnet_outputs = tf.stack(ctrnet_outputs)

        embed_images = utils.preprocess(embed_images)
        ctrnet_images = utils.preprocess(ctrnet_images)

        return (embed_images, embnet_states, embnet_outputs, ctrnet_images,
                ctrnet_states, ctrnet_outputs)
示例#3
0
    def predict(self, imgs, sizes=None, visualize=False):

        # this function gives the prediction results of an image input
        if visualize:
            self.use_preset('visualize')
            prepared_imgs = list()
            sizes = list()
            for img in imgs:
                size = img.shape[1:]
                img = preprocess(tonumpy(img))
                prepared_imgs.append(img)
                sizes.append(size)
        else:
            prepared_imgs = imgs

        bboxes = list()
        labels = list()
        scores = list()

        for img, size in zip(prepared_imgs, sizes):
            img = totensor(img[None]).float()
            scale = img.shape[3] / size[1]
            roi_cls_loc, roi_scores, rois, _ = self.forward(img, scale=scale)

            roi_score = roi_scores.data
            roi_cls_loc = roi_cls_loc.data
            roi = totensor(rois) / scale


            mean = t.Tensor(self.loc_normalize_mean).cuda(). \
                repeat(self.n_class)[None]
            std = t.Tensor(self.loc_normalize_std).cuda(). \
                repeat(self.n_class)[None]

            roi_cls_loc = (roi_cls_loc * std + mean)
            roi_cls_loc = roi_cls_loc.view(-1, self.n_class, 4)
            roi = roi.view(-1, 1, 4).expand_as(roi_cls_loc)
            cls_bbox = loc2bbox(
                tonumpy(roi).reshape((-1, 4)),
                tonumpy(roi_cls_loc).reshape((-1, 4)))
            cls_bbox = totensor(cls_bbox)
            cls_bbox = cls_bbox.view(-1, self.n_class * 4)
            # clip bounding box
            cls_bbox[:, 0::2] = (cls_bbox[:, 0::2]).clamp(min=0, max=size[0])
            cls_bbox[:, 1::2] = (cls_bbox[:, 1::2]).clamp(min=0, max=size[1])

            prob = (F.softmax(totensor(roi_score), dim=1))

            bbox, label, score = self._suppress(cls_bbox, prob)
            bboxes.append(bbox)
            labels.append(label)
            scores.append(score)

        self.use_preset('evaluate')
        return bboxes, labels, scores
    def predict(self, imgs, sizes=None, visualize=False):
        """Detect objects from images.

        This method predicts objects for each image.

        Args:
            imgs (iterable of numpy.ndarray): Arrays holding images.
                All images are in CHW and RGB format
                and the range of their value is :math:`[0, 255]`.
            sizes (iterable of ints) input image sizes.
            visualize: if use visusalize to show images result.

        Returns:
           tuple of lists:
           This method returns a tuple of three lists,
           :obj:`(bboxes, labels, scores)`.

           * **bboxes**: A list of float arrays of shape :math:`(R, 4)`, \
               where :math:`R` is the number of bounding boxes in a image. \
               Each bouding box is organized by \
               :math:`(y_{min}, x_{min}, y_{max}, x_{max})` \
               in the second axis.
           * **labels** : A list of integer arrays of shape :math:`(R,)`. \
               Each value indicates the class of the bounding box. \
               Values are in range :math:`[0, L - 1]`, where :math:`L` is the \
               number of the foreground classes.
           * **scores** : A list of float arrays of shape :math:`(R,)`. \
               Each value indicates how confident the prediction is.

        """
        self.eval()
        # Visualize a few results getting from origin images.
        if visualize:
            self.use_present('visualize')
            prepared_imgs = list()
            sizes = list()
            for img in imgs:
                size = img.shape[1:]
                img = preprocess(img)
                img = torch.from_numpy(img)
                prepared_imgs.append(img)
                sizes.append(size)
        else:
            prepared_imgs = imgs

        bboxes = list()
        labels = list()
        scores = list()
        for img, size in zip(prepared_imgs, sizes):
            img = Variable(img[None].cuda(), volatile=True)
            scale = img.shape[3] / size[1]
            roi_cls_loc, roi_scores, rois, _ = self.forward(img, scale=scale)
            # We are assuming that batch size is 1
            roi_score = roi_scores.data
            roi_cls_loc = roi_cls_loc.data
            roi = torch.from_numpy(rois).cuda() / scale

            # Convert predictions to bbox in image coordinates.
            # Bounding boxes are scaled to the scale of the input images.
            mean = torch.FloatTensor(self.loc_normalize_mean).cuda().repeat(self.n_class)[None]
            std = torch.FloatTensor(self.loc_normalize_std).cuda().repeat(self.n_class)[None]

            roi_cls_loc = (roi_cls_loc * std + mean)
            roi_cls_loc = roi_cls_loc.view(-1, self.n_class, 4)
            roi = roi.view(-1, 1, 4).expand_as(roi_cls_loc)
            cls_bbox = loc2bbox(roi.cpu().numpy().reshape((-1, 4)),
                                roi_cls_loc.cpu().numpy().reshape((-1, 4)))
            cls_bbox = torch.from_numpy(cls_bbox).view(-1, self.n_class * 4)
            # Clip bbox.
            cls_bbox[:, 0::2] = (cls_bbox[:, 0::2]).clamp(min=0, max=size[0])
            cls_bbox[:, 1::2] = (cls_bbox[:, 1::2]).clamp(min=0, max=size[1])
            raw_cls_bbox = cls_bbox.numpy()

            raw_prob = F.softmax(Variable(roi_score), dim=1).cpu().data.numpy()

            bbox, label, score = self._supress(raw_cls_bbox, raw_prob)
            bboxes.append(bbox)
            labels.append(label)
            scores.append(score)

        self.use_present('evaluate')

        return bboxes, labels, scores
示例#5
0
    def consume(self, inputs):

        if self.disk_images:
            # (Examples,)
            input_image = tf.placeholder(tf.string, (self.support, ))
        else:
            # (Examples, timesteps)
            input_image = tf.placeholder(tf.float32,
                                         (None, None) + self.dataset.img_shape)
        input_states = tf.placeholder(
            tf.float32,
            (self.support, self.dataset.time_horizon, self.dataset.state_size))
        input_outputs = tf.placeholder(
            tf.float32, (self.support, self.dataset.time_horizon,
                         self.dataset.action_size))

        # (B. W, H, C)
        input_ctr_image = tf.placeholder(tf.float32,
                                         (None, 1) + self.dataset.img_shape)
        input_ctr_state = tf.placeholder(tf.float32,
                                         (None, 1, self.dataset.state_size))

        training = tf.placeholder_with_default(False, None)

        stacked_embnet_images, bs, cs = [], [], []
        for i in range(self.support):
            embnet_images, embnet_states, embnet_outputs = (
                self.data_sequencer.load(input_image[i], input_states[i],
                                         input_outputs[i]))
            embnet_images = utils.preprocess(embnet_images)
            stacked_embnet_images.append(embnet_images)
            bs.append(embnet_states)
            cs.append(embnet_outputs)

        embnet_images = tf.stack(stacked_embnet_images)
        embnet_images = tf.expand_dims(embnet_images,
                                       axis=0)  # set batchsize 1

        embnet_states = tf.stack(bs)
        embnet_states = tf.expand_dims(embnet_states, axis=0)

        embnet_outputs = tf.stack(cs)
        embnet_outputs = tf.expand_dims(embnet_outputs, axis=0)

        embnet_images.set_shape((None, None, self.data_sequencer.frames) +
                                self.dataset.img_shape)
        embnet_states.set_shape(
            (None, None, self.data_sequencer.frames, self.dataset.state_size))
        embnet_outputs.set_shape(
            (None, None, self.data_sequencer.frames, self.dataset.action_size))

        return {
            'embnet_images': embnet_images,
            'embnet_states': embnet_states,
            'embnet_outputs': embnet_outputs,
            'input_image_files': input_image,
            'input_states': input_states,
            'input_outputs': input_outputs,
            'ctrnet_images': input_ctr_image,
            'ctrnet_states': input_ctr_state,
            'training': training,
            'support': tf.placeholder_with_default(self.support, None),
            'query': tf.placeholder_with_default(0, None),
        }
示例#6
0
 def preproc_dataset(self):
     """Preprocesses dataset according to specified format (see utils)"""
     if (self.ds_name == 'wn18' or self.ds_name == 'fb15'):
         data_utils.preprocess(self.path)
示例#7
0
import logging
import time
from config import CONFIG
from data.utils import preprocess
from gensim.models import KeyedVectors
import gensim.downloader as api

_LOGGER = logging.getLogger(__name__)
_LOGGER.setLevel(logging.INFO)

if __name__ == '__main__':
    WV_MODEL = api.load('glove-wiki-gigaword-300')
    _LOGGER.info("Starting data preprocessing")
    start = time.time()
    preprocess("{}/data/all.txt".format(CONFIG['base_dir']), "{}/data/cleaned.txt".format(CONFIG['base_dir']), WV_MODEL.vocab)
    end = time.time()
    _LOGGER.info("Took {:.2f} seconds to preprocess file".format(end-start))