示例#1
0
 def getData(self):
     if self.config['dataset'] == 'voc':
         self.data_model = VOC()
         self.data_model.getFileList()
         self.data_model.getAnnot()
         self.data_model.getClassAnnot()
         self.data_model.setGeneratorConfig(self.config)
示例#2
0
def Xml2Txt():
    voc_dataset = VOC()
    with open(file=Config.txt_file_dir, mode="a+", encoding="utf-8") as f:
        for i, sample in enumerate(voc_dataset):
            num_bboxes = len(sample["bboxes"])
            line_text = sample["image_file_dir"] + " " + str(
                sample["image_height"]) + " " + str(
                    sample["image_width"]) + " "
            for j in range(num_bboxes):
                bbox = list(map(str, sample["bboxes"][j]))
                cls = str(sample["class_ids"][j])
                bbox.append(cls)
                line_text += " ".join(bbox)
                line_text += " "
            line_text = line_text.strip()
            line_text += "\n"
            print("Writing information of picture {} to {}".format(
                sample["image_file_dir"], Config.txt_file_dir))
            f.write(line_text)
示例#3
0
from data.voc import VOC
from configuration import Config

if __name__ == '__main__':
    voc_dataset = VOC()
    with open(file=Config.txt_file_dir, mode="a+", encoding="utf-8") as f:
        for i, sample in enumerate(voc_dataset):
            num_bboxes = len(sample["bboxes"])
            line_text = sample["image_file_dir"] + " " + str(
                sample["image_height"]) + " " + str(
                    sample["image_width"]) + " "
            for j in range(num_bboxes):
                bbox = list(map(str, sample["bboxes"][j]))
                cls = str(sample["class_ids"][j])
                bbox.append(cls)
                line_text += " ".join(bbox)
                line_text += " "
            line_text = line_text.strip()
            line_text += "\n"
            print("Writing information of picture {} to {}".format(
                sample["image_file_dir"], Config.txt_file_dir))
            f.write(line_text)
示例#4
0
 def getData(self):
     self.voc = VOC(VOC.VOC_ALL)
     self.voc.getFileList()
     self.voc.getAnnot()
     self.voc.getClassAnnot()
     self.voc.setGeneratorConfig(self.config)
示例#5
0
class Alexnet_Train(Train):
    def focal_loss(gamma=2., alpha=.25):
        def focal_loss_fixed(y_true, y_pred):
            pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
            pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
            return -K.sum(
                alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) - K.sum(
                    (1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0))

        return focal_loss_fixed

    def __init__(self):
        self.config = config

    def getData(self):
        self.voc = VOC(VOC.VOC_ALL)
        self.voc.getFileList()
        self.voc.getAnnot()
        self.voc.getClassAnnot()
        self.voc.setGeneratorConfig(self.config)

    def initModel(self):
        config = tf.ConfigProto(device_count={'GPU': 1})
        sess = tf.Session(config=config)
        K.set_session(sess)

        self.model = Alexnet.set(include_inputs=True,
                                 class_num=NUM_CLASSES,
                                 input_dim=INPUT_DIM,
                                 output=self.config['output_func'])

        self.model.summary()

    def buildTrainKeras(self):
        #optimizer = Adam(lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
        optimizer = SGD(lr=self.config['lr'],
                        decay=self.config['decay'],
                        momentum=0.9)
        #optimizer = RMSprop(lr=1e-5, rho=0.9, epsilon=1e-08, decay=0.0)
        self.model.compile(
            loss=self.config['loss'],  #'binary_crossentropy',
            optimizer=optimizer,
            metrics=['accuracy'])

    def fit(self):
        file = path_name + '/' + model_name + '-best.h5'
        if os.path.exists(file):
            self.model.load_weights(file)

        early_stop = EarlyStopping(monitor='val_loss',
                                   min_delta=0.0001,
                                   patience=20,
                                   mode='min',
                                   verbose=1)

        checkpoint = ModelCheckpoint(path_name + '/' + model_name + '-best.h5',
                                     monitor='val_loss',
                                     verbose=1,
                                     save_best_only=True,
                                     mode='min',
                                     period=1)
        tb_counter = 1
        tensorboard = TensorBoard(log_dir=log_path + '/' + model_name + '_' +
                                  str(tb_counter),
                                  histogram_freq=0,
                                  write_graph=True,
                                  write_images=False)

        reduce_lr = ReduceLROnPlateau(monitor='val_loss',
                                      factor=0.2,
                                      patience=2,
                                      min_lr=0.000001,
                                      verbose=1,
                                      cooldown=1)

        train_batch = self.voc.getTrainBatch()
        valid_batch = self.voc.getValidBatch()

        if self.config['data_mode'] == 'on_memory':
            tr_x, tr_y = train_batch
            tst_x, tst_y = valid_batch
            self.history = self.model.fit(
                tr_x,
                tr_y,
                batch_size=self.config['batch_size'],
                epochs=self.config['epochs'],
                verbose=1,
                validation_data=(tst_x, tst_y),
                callbacks=[early_stop, checkpoint, tensorboard, reduce_lr],
                max_queue_size=3)
        else:
            self.history = self.model.fit_generator(
                generator=train_batch,
                steps_per_epoch=len(train_batch),
                epochs=self.config['epochs'],
                verbose=1,
                validation_data=valid_batch,
                validation_steps=len(valid_batch),
                callbacks=[early_stop, checkpoint, tensorboard, reduce_lr],
                max_queue_size=3)

    def run(self):
        self.initModel()
        self.getData()
        self.buildTrainKeras()
        self.fit()
        self.save(file_name=file_name, path_name=path_name)
示例#6
0
class Mobilenet_Train(Train):
    def __init__(self):
        self.config = config

    def getData(self):
        if self.config['dataset'] == 'voc':
            self.data_model = VOC()
            self.data_model.getFileList()
            self.data_model.getAnnot()
            self.data_model.getClassAnnot()
            self.data_model.setGeneratorConfig(self.config)

    def initModel(self):
        _config = tf.ConfigProto(device_count={'GPU': 1})
        sess = tf.Session(config=_config)
        K.set_session(sess)
        if self.config['model_info'] == 'begin':
            self.model = Mobilenetv2.set(include_inputs=True,
                                         class_num=NUM_CLASSES,
                                         input_dim=INPUT_DIM,
                                         output='sigmoid')
        elif self.config['model_info'] == 'pretained':
            self.model = Mobilenetv2.getKerasModelBase(num_class=NUM_CLASSES,
                                                       output='sigmoid',
                                                       fix_layer=156)
        self.model.summary()

    def buildTrainKeras(self):
        optimizer = Adam(lr=1e-4,
                         beta_1=0.9,
                         beta_2=0.999,
                         epsilon=1e-08,
                         decay=0.0)
        #optimizer = SGD(lr=1e-4, decay=0.0005, momentum=0.9)
        #optimizer = RMSprop(lr=1e-5, rho=0.9, epsilon=1e-08, decay=0.0)
        self.model.compile(loss='binary_crossentropy',
                           optimizer=optimizer,
                           metrics=['accuracy'])

    def fit(self):
        file = path_name + '/' + model_name + '-best.h5'
        if os.path.exists(file):
            self.model.load_weights(file)
            fix_layer = 156
            for layer in self.model.layers:
                layer.trainable = False
            # or if we want to set the first 20 layers of the network to be non-trainable
            for layer in self.model.layers[:fix_layer]:
                layer.trainable = False
            for layer in self.model.layers[fix_layer:]:
                layer.trainable = True

        early_stop = EarlyStopping(monitor='val_loss',
                                   min_delta=0.001,
                                   patience=3,
                                   mode='min',
                                   verbose=1)

        checkpoint = ModelCheckpoint(file,
                                     monitor='val_loss',
                                     verbose=1,
                                     save_best_only=True,
                                     mode='min',
                                     period=1)
        tb_counter = 1
        tensorboard = TensorBoard(log_dir=log_path + '/' + model_name + '_' +
                                  str(tb_counter),
                                  histogram_freq=0,
                                  write_graph=True,
                                  write_images=False)

        train_batch = self.data_model.getTrainBatch()
        valid_batch = self.data_model.getValidBatch()

        self.model.fit_generator(
            generator=train_batch,
            steps_per_epoch=len(train_batch),
            epochs=self.config['epochs'],
            verbose=1,
            validation_data=valid_batch,
            validation_steps=len(valid_batch),
            callbacks=[early_stop, checkpoint, tensorboard],
            max_queue_size=3)

    def run(self):
        self.initModel()
        self.getData()
        self.buildTrainKeras()
        self.fit()
        self.save(file_name=file_name, path_name=path_name)