def getData(self): if self.config['dataset'] == 'voc': self.data_model = VOC() self.data_model.getFileList() self.data_model.getAnnot() self.data_model.getClassAnnot() self.data_model.setGeneratorConfig(self.config)
def Xml2Txt(): voc_dataset = VOC() with open(file=Config.txt_file_dir, mode="a+", encoding="utf-8") as f: for i, sample in enumerate(voc_dataset): num_bboxes = len(sample["bboxes"]) line_text = sample["image_file_dir"] + " " + str( sample["image_height"]) + " " + str( sample["image_width"]) + " " for j in range(num_bboxes): bbox = list(map(str, sample["bboxes"][j])) cls = str(sample["class_ids"][j]) bbox.append(cls) line_text += " ".join(bbox) line_text += " " line_text = line_text.strip() line_text += "\n" print("Writing information of picture {} to {}".format( sample["image_file_dir"], Config.txt_file_dir)) f.write(line_text)
from data.voc import VOC from configuration import Config if __name__ == '__main__': voc_dataset = VOC() with open(file=Config.txt_file_dir, mode="a+", encoding="utf-8") as f: for i, sample in enumerate(voc_dataset): num_bboxes = len(sample["bboxes"]) line_text = sample["image_file_dir"] + " " + str( sample["image_height"]) + " " + str( sample["image_width"]) + " " for j in range(num_bboxes): bbox = list(map(str, sample["bboxes"][j])) cls = str(sample["class_ids"][j]) bbox.append(cls) line_text += " ".join(bbox) line_text += " " line_text = line_text.strip() line_text += "\n" print("Writing information of picture {} to {}".format( sample["image_file_dir"], Config.txt_file_dir)) f.write(line_text)
def getData(self): self.voc = VOC(VOC.VOC_ALL) self.voc.getFileList() self.voc.getAnnot() self.voc.getClassAnnot() self.voc.setGeneratorConfig(self.config)
class Alexnet_Train(Train): def focal_loss(gamma=2., alpha=.25): def focal_loss_fixed(y_true, y_pred): pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred)) pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred)) return -K.sum( alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) - K.sum( (1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0)) return focal_loss_fixed def __init__(self): self.config = config def getData(self): self.voc = VOC(VOC.VOC_ALL) self.voc.getFileList() self.voc.getAnnot() self.voc.getClassAnnot() self.voc.setGeneratorConfig(self.config) def initModel(self): config = tf.ConfigProto(device_count={'GPU': 1}) sess = tf.Session(config=config) K.set_session(sess) self.model = Alexnet.set(include_inputs=True, class_num=NUM_CLASSES, input_dim=INPUT_DIM, output=self.config['output_func']) self.model.summary() def buildTrainKeras(self): #optimizer = Adam(lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) optimizer = SGD(lr=self.config['lr'], decay=self.config['decay'], momentum=0.9) #optimizer = RMSprop(lr=1e-5, rho=0.9, epsilon=1e-08, decay=0.0) self.model.compile( loss=self.config['loss'], #'binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) def fit(self): file = path_name + '/' + model_name + '-best.h5' if os.path.exists(file): self.model.load_weights(file) early_stop = EarlyStopping(monitor='val_loss', min_delta=0.0001, patience=20, mode='min', verbose=1) checkpoint = ModelCheckpoint(path_name + '/' + model_name + '-best.h5', monitor='val_loss', verbose=1, save_best_only=True, mode='min', period=1) tb_counter = 1 tensorboard = TensorBoard(log_dir=log_path + '/' + model_name + '_' + str(tb_counter), histogram_freq=0, write_graph=True, write_images=False) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=2, min_lr=0.000001, verbose=1, cooldown=1) train_batch = self.voc.getTrainBatch() valid_batch = self.voc.getValidBatch() if self.config['data_mode'] == 'on_memory': tr_x, tr_y = train_batch tst_x, tst_y = valid_batch self.history = self.model.fit( tr_x, tr_y, batch_size=self.config['batch_size'], epochs=self.config['epochs'], verbose=1, validation_data=(tst_x, tst_y), callbacks=[early_stop, checkpoint, tensorboard, reduce_lr], max_queue_size=3) else: self.history = self.model.fit_generator( generator=train_batch, steps_per_epoch=len(train_batch), epochs=self.config['epochs'], verbose=1, validation_data=valid_batch, validation_steps=len(valid_batch), callbacks=[early_stop, checkpoint, tensorboard, reduce_lr], max_queue_size=3) def run(self): self.initModel() self.getData() self.buildTrainKeras() self.fit() self.save(file_name=file_name, path_name=path_name)
class Mobilenet_Train(Train): def __init__(self): self.config = config def getData(self): if self.config['dataset'] == 'voc': self.data_model = VOC() self.data_model.getFileList() self.data_model.getAnnot() self.data_model.getClassAnnot() self.data_model.setGeneratorConfig(self.config) def initModel(self): _config = tf.ConfigProto(device_count={'GPU': 1}) sess = tf.Session(config=_config) K.set_session(sess) if self.config['model_info'] == 'begin': self.model = Mobilenetv2.set(include_inputs=True, class_num=NUM_CLASSES, input_dim=INPUT_DIM, output='sigmoid') elif self.config['model_info'] == 'pretained': self.model = Mobilenetv2.getKerasModelBase(num_class=NUM_CLASSES, output='sigmoid', fix_layer=156) self.model.summary() def buildTrainKeras(self): optimizer = Adam(lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) #optimizer = SGD(lr=1e-4, decay=0.0005, momentum=0.9) #optimizer = RMSprop(lr=1e-5, rho=0.9, epsilon=1e-08, decay=0.0) self.model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) def fit(self): file = path_name + '/' + model_name + '-best.h5' if os.path.exists(file): self.model.load_weights(file) fix_layer = 156 for layer in self.model.layers: layer.trainable = False # or if we want to set the first 20 layers of the network to be non-trainable for layer in self.model.layers[:fix_layer]: layer.trainable = False for layer in self.model.layers[fix_layer:]: layer.trainable = True early_stop = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=3, mode='min', verbose=1) checkpoint = ModelCheckpoint(file, monitor='val_loss', verbose=1, save_best_only=True, mode='min', period=1) tb_counter = 1 tensorboard = TensorBoard(log_dir=log_path + '/' + model_name + '_' + str(tb_counter), histogram_freq=0, write_graph=True, write_images=False) train_batch = self.data_model.getTrainBatch() valid_batch = self.data_model.getValidBatch() self.model.fit_generator( generator=train_batch, steps_per_epoch=len(train_batch), epochs=self.config['epochs'], verbose=1, validation_data=valid_batch, validation_steps=len(valid_batch), callbacks=[early_stop, checkpoint, tensorboard], max_queue_size=3) def run(self): self.initModel() self.getData() self.buildTrainKeras() self.fit() self.save(file_name=file_name, path_name=path_name)