def post(self): res = {} try: # get all sim words base_word = request.json['base_word'] print('recv base word:', base_word) sim_list = [] for item in word_model.most_similar(base_word): sim_list.append(item[0]) res['sim'] = sim_list # get all important words class_name = request.json['class_name'] print('recv classname:', class_name) important_list = [] for classname in class_name: remap_name = class_name_remap[classname] word_df = word_importance_model.ix[remap_name] important_list += list(flatten(word_df[[2]].head(20).values.tolist())) res['important'] = important_list # get all industry words industry_list = [] for classname in class_name: value_name = label2value[classname] industry_df = industry_word_model.loc[ industry_word_model.classname.str.contains(value_name)] industry_list += list(flatten(industry_df[[1]].head(20).values.tolist())) res['industry'] = industry_list except Exception as e: print(e) print("res words:", res) return res
def predict(self, sent, pipeline=False): self.encode(sent) if self.full: constraints = [] if self.args.no_lin_constraint else self.get_tree_constraints( sent) res = self.decode(sent[self.pred_input_key], constraints) sent['linearized_tokens'] = res['seq'] else: for token in traverse_bottomup(sent.root): domain = ( [token] + token['pdeps']) if self.args.pred_tree else token['domain'] if len(domain) > 1: constraints = [] if self.args.no_lin_constraint else self.get_subtree_constraints( token) res = self.decode(domain, constraints) token['linearized_domain'] = res['seq'] # add predicted sequential information f_vec = self.f_lstm.initial_state().transduce( [t.vecs[self.vec_key] for t in res['seq']])[-1] b_vec = self.b_lstm.initial_state().transduce( [t.vecs[self.vec_key] for t in res['seq'][::-1]])[-1] token.vecs[self.vec_key] += (f_vec + b_vec) else: token['linearized_domain'] = [token] sent['linearized_tokens'] = flatten(token, 'linearized_domain')
def post(self): class_name = request.json['classname'] print('recv class_name:', class_name) class_name = class_name_remap[class_name] word_df = word_importance_model.ix[class_name] word_list = list(flatten(word_df[[2]].head(20).values.tolist())) return word_list
def post(self): class_name = request.json['classname'] print('recv class_name:', class_name) class_name = label2value[class_name] #industy_word_path = "../data/words/word_{name}".format(name=class_name) industry_df = industry_word_model.loc[ industry_word_model.classname.str.contains(class_name)] word_list = list(flatten(industry_df[[1]].head(20).values.tolist())) return word_list
def post(self): res = {} try: # get all sim words base_word = request.json['base_word'] print('recv base word:', base_word) sim_list = [] for item in word_model.most_similar(base_word): sim_list.append(item[0]) res['sim'] = sim_list # get all important words class_name = request.json['class_name'] print('recv classname:', class_name) important_list = [] for classname in class_name: remap_name = class_name_remap[classname] word_df = word_importance_model.ix[remap_name] important_list += list( flatten(word_df[[2]].head(20).values.tolist())) res['important'] = important_list # get all industry words industry_list = [] for classname in class_name: value_name = label2value[classname] industry_df = industry_word_model.loc[ industry_word_model.classname.str.contains(value_name)] industry_list += list( flatten(industry_df[[1]].head(20).values.tolist())) res['industry'] = industry_list except Exception as e: print(e) print("res words:", res) return res
def train_one_step(self, sent): total = correct = loss = 0 t0 = time() self.encode(sent) if self.full: constraints = [] if self.args.no_lin_constraint else self.get_tree_constraints( sent) res = self.decode(sent[self.train_input_key], constraints, True) loss = res['loss'] total += 1 sent['linearized_tokens'] = res['seq'] correct += int( sent['linearized_tokens'] == sent['gold_linearized_tokens']) else: for token in traverse_bottomup(sent.root): domain = ( [token] + token['pdeps']) if self.args.pred_tree else token['domain'] if len(domain) > 1: constraints = [] if self.args.no_lin_constraint else self.get_subtree_constraints( token) res = self.decode(domain, constraints, True) token['linearized_domain'] = res['seq'] loss += res['loss'] total += 1 correct += int(token['linearized_domain'] == token['gold_linearized_domain']) # add predicted sequential information f_vec = self.f_lstm.initial_state().transduce( [t.vecs[self.vec_key] for t in res['seq']])[-1] b_vec = self.b_lstm.initial_state().transduce( [t.vecs[self.vec_key] for t in res['seq'][::-1]])[-1] token.vecs[self.vec_key] += (f_vec + b_vec) else: token['linearized_domain'] = [token] sent['linearized_tokens'] = flatten(token, 'linearized_domain') loss_value = loss.value() if loss else 0 return { 'time': time() - t0, 'loss': loss_value, 'loss_expr': loss, 'total': total, 'correct': correct }
def post(self): res = {} try: # get all important words base_word = request.json['base_word'] class_name = request.json['class_name'] print('recv classname:', class_name) important_list = [] for classname in class_name: remap_name = class_name_remap[classname] word_df = word_importance_model.ix[remap_name] important_list += list(flatten(word_df[[2]].head(20).values.tolist())) res['important'] = important_list except Exception as e: print(e) print("Important words:", res) return res
def post(self): res = {} try: # get all industry words base_word = request.json['base_word'] class_name = request.json['class_name'] industry_list = [] for classname in class_name: value_name = label2value[classname] industry_df = industry_word_model.loc[ industry_word_model.classname.str.contains(value_name)] industry_list += list(flatten(industry_df[[1]].head(20).values.tolist())) res['industry'] = industry_list except Exception as e: print(e) print("Industry words:", res) return res
def post(self): res = {} try: # get all important words base_word = request.json['base_word'] class_name = request.json['class_name'] print('recv classname:', class_name) important_list = [] for classname in class_name: remap_name = class_name_remap[classname] word_df = word_importance_model.ix[remap_name] important_list += list( flatten(word_df[[2]].head(20).values.tolist())) res['important'] = important_list except Exception as e: print(e) print("Important words:", res) return res
def post(self): res = {} try: # get all industry words base_word = request.json['base_word'] class_name = request.json['class_name'] industry_list = [] for classname in class_name: value_name = label2value[classname] industry_df = industry_word_model.loc[ industry_word_model.classname.str.contains(value_name)] industry_list += list( flatten(industry_df[[1]].head(20).values.tolist())) res['industry'] = industry_list except Exception as e: print(e) print("Industry words:", res) return res
def get_tx_events(nodes): run('mkdir ./logs/') run('rm -rf ./logs/*_txs') all_events = pmap(get_tx_events_single_node, nodes) return sorted(data.flatten(all_events))
#channels = range(0, 5) # DO NOT CHANGE surrounding = 250 labels = [ 0, 1, 1, 0, 2, 1, 2, 0, 0, 2, 1, 0, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 0, 0, 1, 2, 1, 2, 1, 2, 2, 0, 1, 0, 1, 2, 2, 0, 2, 2, 1, 2, 0, 0, 0, 1, 0, 0, 2, 2, 2, 2, 2, 1, 2, 1, 0, 2, 2, 0, 0, 2, 0, 2, 2, 1, 1, 2, 2, 0, 1, 1, 2, 1, 2, 1, 0, 0, 0, 2, 0, 1, 2, 2, 0, 0, 1, 0, 2, 1, 2, 2, 1, 2, 2, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 2, 2, 0, 0, 1, 0, 2, 0, 2, 2, 0, 2, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 0, 0, 2, 1, 2, 1, 2, 2, 1, 2, 0 ] sequence_groups = transform_data([ data.flatten( data.process_scrambled(labels, ['colors2.txt'], channels=channels, sample_rate=250, surrounding=surrounding, exclude=set([71, 155, 317]))) ]) #silence_group = transform_data(data.process(1, ['math6_silence.txt'], channels=channels, sample_rate=250, surrounding=surrounding)) silence_group = transform_data( data.process_silence_between(['colors2.txt'], channels=channels, sample_rate=250, surrounding=surrounding)) sequence_groups = np.array(list(sequence_groups) + list(silence_group)) print len(sequence_groups) print map(len, sequence_groups)
def get_tx_events(nodes, tx_filename): run('mkdir ./logs/') run('rm -rf ./logs/*_txs') all_events = pmap( lambda node: get_tx_events_single_node(node, tx_filename), nodes) return sorted(data.flatten(all_events))