def train(): net.train() # loss counters loc_loss = 0 # epoch conf_loss = 0 epoch = 0 print('Loading Dataset...') dataset = ROSDDetection(args.rosd_root, train_sets, SSDAugmentation( ssd_dim, means), AnnotationTransform_ROSD()) epoch_size = len(dataset) // args.batch_size print('Training SSD on', dataset.name) step_index = 0 if args.visdom: # initialize visdom loss plot lot = viz.line( X=torch.zeros((1,)).cpu(), Y=torch.zeros((1, 3)).cpu(), opts=dict( xlabel='Iteration', ylabel='Loss', title='Current SSD Training Loss', legend=['Loc Loss', 'Conf Loss', 'Loss'] ) ) epoch_lot = viz.line( X=torch.zeros((1,)).cpu(), Y=torch.zeros((1, 3)).cpu(), opts=dict( xlabel='Epoch', ylabel='Loss', title='Epoch SSD Training Loss', legend=['Loc Loss', 'Conf Loss', 'Loss'] ) ) batch_iterator = None data_loader = data.DataLoader(dataset, batch_size, num_workers=args.num_workers, shuffle=True, collate_fn=detection_collate_ROSD, pin_memory=True) for iteration in range(args.start_iter, max_iter): if (not batch_iterator) or (iteration % epoch_size == 0): # create batch iterator batch_iterator = iter(data_loader) if iteration in stepvalues: step_index += 1 adjust_learning_rate(optimizer, args.gamma, step_index) if args.visdom: viz.line( X=torch.ones((1, 3)).cpu() * epoch, Y=torch.Tensor([loc_loss, conf_loss, loc_loss + conf_loss]).unsqueeze(0).cpu() / epoch_size, win=epoch_lot, update='append' ) # reset epoch loss counters loc_loss = 0 conf_loss = 0 epoch += 1 # load train data images, targets = next(batch_iterator) if args.cuda: images = Variable(images.cuda()) targets = [Variable(anno.cuda(), volatile=True) for anno in targets] else: images = Variable(images) targets = [Variable(anno, volatile=True) for anno in targets] # forward t0 = time.time() out = net(images) # backprop optimizer.zero_grad() loss_l, loss_c = criterion(out, targets) loss = loss_l + loss_c loss.backward() optimizer.step() t1 = time.time() loc_loss += loss_l.data[0] conf_loss += loss_c.data[0] if iteration % 10 == 0: print('Timer: %.4f sec.' % (t1 - t0)) print('iter ' + repr(iteration) + ' || Loss: %.4f ||' % (loss.data[0]), end=' ') if args.visdom and args.send_images_to_visdom: random_batch_index = np.random.randint(images.size(0)) viz.image(images.data[random_batch_index].cpu().numpy()) if args.visdom: viz.line( X=torch.ones((1, 3)).cpu() * iteration, Y=torch.Tensor([loss_l.data[0], loss_c.data[0], loss_l.data[0] + loss_c.data[0]]).unsqueeze(0).cpu(), win=lot, update='append' ) # hacky fencepost solution for 0th epoch plot if iteration == 0: viz.line( X=torch.zeros((1, 3)).cpu(), Y=torch.Tensor([loc_loss, conf_loss, loc_loss + conf_loss]).unsqueeze(0).cpu(), win=epoch_lot, update=True ) if iteration % 5000 == 0: print('Saving state, iter:', iteration) torch.save(ssd_net.state_dict(), 'weights/fused_concat_ssd512_rosd_' + repr(iteration) + '.pth') torch.save(ssd_net.state_dict(), args.save_folder + '' + args.version + '_rosd.pth')
coords = (pt[0], pt[1], pt[2], pt[3]) pred_num += 1 with open(filename, mode='a') as f: f.write( str(pred_num) + ' label: ' + label_name + ' score: ' + str(score) + ' ' + ' || '.join(str(c) for c in coords) + '\n') j += 1 if __name__ == '__main__': # load net num_classes = len(ROSD_CLASSES) + 1 # +1 background net = build_ssd('test', 512, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model)) net.eval() print('Finished loading model!') # load data testset = ROSDDetection(args.rosd_root, ['test'], None, AnnotationTransform_ROSD()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, testset, BaseTransform(net.size, (104, 117, 123)), thresh=args.visual_threshold)