#Model loading output_channels = 32 #mapas características de salida de la capa 1 de la CNN model = CNN_Fusion(output_channels, output_channels) #model.load_state_dict(torch.load("E:\\INVESTIGACIÓN\\Proyectos\\Boundaries Detection\\Trained_models_MLS_SSLM\\Trained_models_Gauss0,1_lr0,001_4cnn_drop\\saved_model_" + epochs + "epochs.bin")) model.load_state_dict(torch.load("E:\\INVESTIGACIÓN\\Proyectos\\Boundaries Detection\\Trained models\\MLS_SSLM_MFCCs_cos_Chromas_cos_2pool3\\saved_model_" + epochs + "epochs.bin")) model.eval() batch_size = 1 transform = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor()]) im_path_mel = "E:\\INVESTIGACIÓN\\Proyectos\\Boundaries Detection\\Inputs\\TEST\\np MLS\\" im_path_L_MFCCs = "E:\\INVESTIGACIÓN\\Proyectos\\Boundaries Detection\\Inputs\\TEST\\" + matrix + "\\" im_path_L_MFCCs2 = "E:\\INVESTIGACIÓN\\Proyectos\\Boundaries Detection\\Inputs\\TEST\\" + matrix2 + "\\" labels_path = "E:\\UNIVERSIDAD\\MÁSTER INGENIERÍA INDUSTRIAL\\TFM\\Database\\salami-data-public\\annotations\\" mels_dataset = SSMDataset(im_path_mel, labels_path, transforms=[padding_MLS, normalize_image, borders]) mels_trainloader = DataLoader(mels_dataset, batch_size = batch_size, num_workers=0) sslms_dataset = SSMDataset(im_path_L_MFCCs, labels_path, transforms=[padding_SSLM, normalize_image, borders]) sslms_trainloader = DataLoader(sslms_dataset, batch_size = batch_size, num_workers=0) sslms_dataset2 = SSMDataset(im_path_L_MFCCs2, labels_path, transforms=[padding_SSLM, normalize_image, borders]) sslms_trainloader2 = DataLoader(sslms_dataset2, batch_size = batch_size, num_workers=0) """ for k in range(len(sslm_trainloader)): if sslms_dataset[k][0] == 6762: break """ hop_length = 1024 sr = 44100 window_size = 2024
model.load_state_dict( torch.load( "E:\\INVESTIGACIÓN\\Proyectos\\Boundaries Detection\\Trained models\\SSLM_MFCCs_euclidean_2pool3\\saved_model_" + epochs + "epochs.bin")) model.eval() batch_size = 1 transform = transforms.Compose( [transforms.ToPILImage(), transforms.ToTensor()]) im_path_sslm = "E:\\INVESTIGACIÓN\\Proyectos\\Boundaries Detection\\Inputs\\TEST\\" + matrix + "\\" labels_path = "E:\\UNIVERSIDAD\\MÁSTER INGENIERÍA INDUSTRIAL\\TFM\\Database\\salami-data-public\\annotations\\" sslm_dataset = SSMDataset(im_path_sslm, labels_path, transforms=[padding_SSLM, normalize_image, borders]) sslm_trainloader = DataLoader(sslm_dataset, batch_size=batch_size, num_workers=0) hop_length = 1024 sr = 44100 window_size = 2024 pooling_factor = 6 lamda = 6 / pooling_factor padding_factor = 50 lamda = round(lamda * sr / hop_length) n_songs = len(sslm_trainloader) delta = 0.205 beta = 1
"/media/carlos/FILES/INVESTIGACION/Proyectos/Boundaries Detection/Trained models/MLS/saved_model_" + epochs + "epochs.bin", map_location=torch.device('cpu'))) model.eval() batch_size = 1 transform = transforms.Compose( [transforms.ToPILImage(), transforms.ToTensor()]) im_path_mel = "/media/carlos/FILES/INVESTIGACION/Proyectos/Boundaries Detection/Inputs/TEST/np MLS/" #im_path_L_MFCCs = "/media/carlos/FILES/INVESTIGACION/Proyectos/Boundaries Detection/Inputs/TEST/np SSLM from Chromas cosine 2pool3/" labels_path = "/media/carlos/FILES/INVESTIGACION/Datasets/MusicStructure/SALAMI/annotations/" mels_dataset = SSMDataset(im_path_mel, labels_path, transforms=[padding_MLS, normalize_image, borders]) mels_trainloader = DataLoader(mels_dataset, batch_size=batch_size, num_workers=0) #sslms_dataset = SSMDataset(im_path_L_MFCCs, labels_path, transforms=[padding_SSLM, normalize_image, borders]) #sslms_trainloader = DataLoader(sslms_dataset, batch_size = batch_size, num_workers=0) hop_length = 1024 sr = 44100 window_size = 2024 pooling_factor = 6 padding_factor = 50 #samples lamda = 6 / pooling_factor lamda = round(lamda * sr / hop_length)
from model_CNN_MLS import CNN_Fusion import numpy as np from scipy import signal import mir_eval device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') start_time = time.time() batch_size = 1 labels_path = "/media/carlos/FILES/SALAMI/annotations/" im_path_mls_train = "/media/carlos/FILES/INVESTIGACIÓN/Proyectos/Boundaries Detection/Inputs/TRAIN/np MLS/" im_path_mls_val = "media/carlos/FILES/INVESTIGACIÓN/Proyectos/Boundaries Detection/Inputs/VALIDATION/np MLS/" #Datasets initialization dataset_mls_train = SSMDataset( im_path_mls_train, labels_path, transforms=[padding_MLS, normalize_image, borders]) dataset_mls_val = SSMDataset( im_path_mls_val, labels_path, transforms=[padding_MLS, normalize_image, borders]) #creating train and test #1006 songs as dataset, so 65% for training (first 650 songs), #15% for validation (next 150 songs) and #20% for test (last 206 songs) trainloader_mls = DataLoader(dataset_mls_train, batch_size=batch_size, num_workers=0, shuffle=False)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') start_time = time.time() batch_size = 1 labels_path = "H:\\INVESTIGACION\\Datasets\\MusicStructure\\SALAMI\\annotations\\" im_path_mel_near_train = "H:\\INVESTIGACION\\Proyectos\\Boundaries Detection\\Inputs\\TRAIN\\np MLS\\" im_path_L_MFCCs_near_train = "H:\\INVESTIGACION\\Proyectos\\Boundaries Detection\\Inputs\\TRAIN\\np SSLM from MFCCs euclidean 2pool3\\" im_path_L_MFCCs_near_train2 = "H:\\INVESTIGACION\\Proyectos\\Boundaries Detection\\Inputs\\TRAIN\\np SSLM from MFCCs cosine 2pool3\\" im_path_mel_near_val = "H:\\INVESTIGACION\\Proyectos\\Boundaries Detection\\Inputs\\VALIDATION\\np MLS\\" im_path_L_MFCCs_near_val = "H:\\INVESTIGACION\\Proyectos\\Boundaries Detection\\Inputs\\VALIDATION\\np SSLM from MFCCs euclidean 2pool3\\" im_path_L_MFCCs_near_val2 = "H:\\INVESTIGACION\\Proyectos\\Boundaries Detection\\Inputs\\VALIDATION\\np SSLM from MFCCs cosine 2pool3\\" #Datasets initialization dataset_mels_train = SSMDataset( im_path_mel_near_train, labels_path, transforms=[padding_MLS, normalize_image, borders]) dataset_sslms_train = SSMDataset( im_path_L_MFCCs_near_train, labels_path, transforms=[padding_SSLM, normalize_image, borders]) dataset_sslms_train2 = SSMDataset( im_path_L_MFCCs_near_train2, labels_path, transforms=[padding_SSLM, normalize_image, borders]) dataset_mels_val = SSMDataset( im_path_mel_near_val, labels_path, transforms=[padding_MLS, normalize_image, borders]) dataset_sslms_val = SSMDataset(
from model_CNN_SSLM import CNN_Fusion import numpy as np from scipy import signal import mir_eval device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') start_time = time.time() batch_size = 1 labels_path = "/media/carlos/FILES/SALAMI/annotations/" im_path_L_MFCCs_near_train = "/media/carlos/FILES/INVESTIGACIÓN/Proyectos/Boundaries Detection/Inputs/TRAIN/np SSLM from MFCCs euclidean 2pool3/" im_path_L_MFCCs_near_val = "/media/carlos/FILES/INVESTIGACIÓN/Proyectos/Boundaries Detection/Inputs/VALIDATION/np SSLM from MFCCs euclidean 2pool3/" #Datasets initialization dataset_sslms_train = SSMDataset( im_path_L_MFCCs_near_train, labels_path, transforms=[normalize_image, padding_SSLM, borders]) dataset_sslms_val = SSMDataset( im_path_L_MFCCs_near_val, labels_path, transforms=[normalize_image, padding_SSLM, borders]) #creating train and test #1006 songs as dataset, so 65% for training (first 650 songs), #15% for validation (next 150 songs) and #20% for test (last 206 songs) trainloader_sslms = DataLoader(dataset_sslms_train, batch_size=batch_size, num_workers=0, shuffle=False)