plt.style.use(['ggplot']) plt.tight_layout() plt.gcf().subplots_adjust(bottom=0.13) plt.gcf().subplots_adjust(left=0.13) plt.rcParams["figure.figsize"] = (14, 12) plt.ticklabel_format(style='plain', useOffset=False) #%% #data = pd.read_csv('../tommi_test_data.csv', sep=";", header=0) data = pd.read_csv('../tommi_test_data_more_diff_steps.csv', sep=";", header=0) data = data.loc[data["Warning_code"] == 0] data = data.reset_index(drop=True) tforce_DF = DataHandler.calculateTotalForce(data) step_t_DF = DataHandler.calculateStepTime(data) #%% Bagging test avg_acc, real_label, pred_label = Ensemble.testBagging(step_t_DF) pred_label_df = pred_label real_label_df = real_label pred_label_df = pred_label_df.replace("Normal", 0) pred_label_df = pred_label_df.replace("Fall", 1) real_label_df = real_label_df.replace("Normal", 0) real_label_df = real_label_df.replace("Fall", 1)
from sklearn.metrics import roc_auc_score plt.style.use(['ggplot']) plt.tight_layout() plt.gcf().subplots_adjust(bottom=0.13) plt.gcf().subplots_adjust(left=0.13) plt.rcParams["figure.figsize"] = (14, 12) plt.ticklabel_format(style='plain', useOffset=False) #%% data = pd.read_csv('../tommi+diego_test_data.csv', sep=";", header=0) data = data.loc[data["Warning_code"] == 0] data = data.reset_index(drop=True) data = DataHandler.calculateTotalForce(data) data = DataHandler.calculateStepTime(data) data = DataHandler.calculateForceValues(data) data = DataHandler.calculatePhaseForceValues(data) pd.set_option('display.max_columns', None) selected_data = data.loc[:, DataColumns.getSelectedCols3andY()] selected_data #%% Boosting test avg_acc, real_label, pred_label = Ensemble.testBoosting(data) pred_label_df = pred_label real_label_df = real_label