示例#1
0
def learn_mag_circuit_neural(learning_trials):
    # make the E nodes. 
    Enode1 = dataTypes.reg_E_Node('E1', [], [], [])
    Enode2 = dataTypes.reg_E_Node('E2', [], [], [])
    Enode3 = dataTypes.gaussian_E_Node('EG', [], [], [])
    Enodes = [Enode1, Enode2, Enode3]
    # make the A nodes. 
    Anodes = []
    for i in range(3):
        Anode = dataTypes.reg_A_Node(str(i), [], [], [])
        Anodes.append(Anode)
    # make the semantics.
    semantics = []
    for i in range(10):
        new_sem = dataTypes.MLS_sem(str(i), [], [])
        semantics.append(new_sem)
    # make stand-in POs.
    PO1 = dataTypes.basicTimingNode('PO1', [], [], [])
    PO2 = dataTypes.basicTimingNode('PO2', [], [], [])
    POs = [PO1, PO2]

    # connect stand-in POs to E nodes.
    Links = []
    for PO in POs:
        for Enode in Enodes:
            new_link = dataTypes.basicLink(PO, Enode, 1.0)
            Enode.higher_connections.append(new_link)
    # connect E nodes to A nodes. 
    for Enode in Enodes:
        Enode.lateral_connections = Enodes
        for Anode in Anodes:
            new_link = dataTypes.basicLink(Enode, Anode, random.uniform(.1, 1.0))
            Enode.lower_connections.append(new_link)
            Anode.higher_connections.append(new_link)
            Links.append(new_link)
    # connect the A nodes to semantics.
    for Anode in Anodes:
        Anode.lateral_connections = Anodes
        for semantic in semantics:
            new_link = dataTypes.basicLink(Anode, semantic, random.random())
            Anode.lower_connections.append(new_link)
            semantic.higher_connections.append(new_link)
            Links.append(new_link)

    learning_trials = 10
    for i in range(learning_trials):
        # set activation of POs.
        same_trial = random.random()
        if same_trial > .5:
            PO1.act = 1.0
            same_trial = False
        else:
            PO1.act, PO2.act = 0.5, 0.5
            same_trial = True
        # until the local inhibitor fires (i.e., while the first PO is active), update inputs, activations, and weights. 
        for i in range(110):
            # update inputs to all units. 
            for Enode in Enodes:
                Enode.update_input()
            for Anode in Anodes:
                Anode.update_input()
            for semantic in semantics:
                semantic.update_input()
            #pdb.set_trace()
            # get max_sem_input. 
            max_sem_input = 0.0
            for semantic in semantics:
                if semantic.input > max_sem_input:
                    max_sem_input = semantic.input
            # subtractive normalisation. 
            for semantic in semantics:
                if semantic.input < max_sem_input:
                    semantic.input -= max_sem_input
            # then update max_sem_input for divisive normalisation. 
            for semantic in semantics:
                semantic.set_max_sem_input(max_sem_input)
            # update activation and clear the input of all units. 
            for Enode in Enodes:
                Enode.update_act()
                Enode.clear_input()
            for Anode in Anodes:
                Anode.update_act()
                Anode.clear_input()
            for semantic in semantics:
                semantic.update_act()
                semantic.clear_input()
            # learning. 
            if i >= 20:
                for Enode in Enodes:
                    Enode.adjust_links()
                for Anode in Anodes:
                    Anode.adjust_links()
        # after n iterations, if same_trial is False, then fire the local inhibitor, which inhibits all units, and start time since last fired of the most active A unit. 
        if not same_trial:
            active_unit = None
            max_act = 0.0
            for Anode in Anodes:
                if Anode.act > max_act:
                    active_unit = Anode
            active_unit.time_since_fired = 1
        for Enode in Enodes:
            Enode.clear_input_and_act()
        for Anode in Anodes:
            Anode.clear_input_and_act
        for semantic in semantics:
            semantic.clear_all()
        # until the global inhibitor fires (i.e., while second PO is active), update inputs, activations, and weights. 
        for i in range(110):
            # update inputs to all units. 
            for Enode in Enodes:
                Enode.update_input()
            for Anode in Anodes:
                Anode.update_input()
            for semantic in semantics:
                semantic.update_input()
            # get max_sem_input. 
            max_sem_input = 0.0
            for semantic in semantics:
                if semantic.input > max_sem_input:
                    max_sem_input = semantic.input
            # subtractive normalisation. 
            for semantic in semantics:
                if semantic.input < max_sem_input:
                    semantic.input -= max_sem_input
            # then update max_sem_input for divisive normalisation. 
            for semantic in semantics:
                semantic.set_max_sem_input(max_sem_input)
            # update activation of all units. 
            for Enode in Enodes:
                Enode.update_act()
            for Anode in Anodes:
                Anode.update_act()
            for semantic in semantics:
                semantic.update_act()
            # learning. 
            if i >= 20:
                for Enode in Enodes:
                    Enode.adjust_links()
                for Anode in Anodes:
                    Anode.adjust_links() 
示例#2
0
def ent_magnitudeMoreLessSame(extent1, extent2):
    # take two representations of extent, and have them compete.
    # first build a simple entropyNet with the extents as lower-level nodes.
    entropyNet = dataTypes.entropyNet()
    for i in range(max(extent1,extent2)):
        new_sem = dataTypes.basicEntNode(False, True, [])
        entropyNet.inputs.append(new_sem)
    # and now make an object attached to each extent as a higher-level (output) node.
    # first make the nodes.
    extent_node1 = dataTypes.basicEntNode(True, False, [])
    extent_node2 = dataTypes.basicEntNode(True, False, [])
    entropyNet.outputs = [extent_node1, extent_node2]
    # connect each node to the correct extent semantics.
    for i in range(extent1):
        # create a link between the ith input unit and extent_node1.
        new_connection = dataTypes.basicLink(extent_node1, entropyNet.inputs[i], 1.0)
        entropyNet.connections.append(new_connection) 
        # add the connection to the higher and lower nodes it links.
        extent_node1.connections.append(new_connection)
        entropyNet.inputs[i].connections.append(new_connection)
    for i in range(extent2):
        # create a link between the ith input unit and extent_node2.
        new_connection = dataTypes.basicLink(extent_node2, entropyNet.inputs[i], 1.0)
        entropyNet.connections.append(new_connection)
        # add the connection to the higher and lower nodes it links.
        extent_node2.connections.append(new_connection)
        entropyNet.inputs[i].connections.append(new_connection)
    # set activations of all extent nodes to 1.0.
    for node in entropyNet.inputs:
        node.act = 1.0
    # until the network settles (i.e., only one output node is active for 3 iterations), keep running.
    unsettled = 0
    iterations = 0
    # set gamma and delta.
    gamma, delta = 0.3, 0.1
    delta_outputs_previous = 0.0
    settled = 0
    while settled < 3:
        # update the inputs to the output units.
        for node in entropyNet.outputs:
            node.clear_input()
            node.update_input(entropyNet)
        # update the activations of the output units.
        for node in entropyNet.outputs:
            node.update_act(gamma, delta)
        # FOR DEBUGGING: print inputs and outputs of all nodes.
        #pdb.set_trace()
        print 'iteration = ', iterations
        print 'INPUTS'
        for node in entropyNet.inputs:
            print node.input, ', ', node.act
        print 'OUTPUTS'
        for node in entropyNet.outputs:
            print node.input, ', ', node.act
        # check for settling. if the delta_outputs has not changed, add 1 to settled, otherwise, clear unsettled.
        delta_outputs = entropyNet.outputs[0].act-entropyNet.outputs[1].act
        print delta_outputs == delta_outputs_previous
        print settled
        print ''
        if delta_outputs == delta_outputs_previous:
            settled += 1
        else:
            settled = 0
        delta_outputs_previous = delta_outputs
        iterations += 1
    # the active output node is 'more', and the inactive output node is 'less', or the two extents are equal.
    if entropyNet.outputs[0].act > entropyNet.outputs[1].act:
        more = extent1
        less = extent2
        same_flag = False
    elif entropyNet.outputs[0].act < entropyNet.outputs[1].act:
        more = extent2
        less = extent1
        same_flag = False
    else: # the two extents are equal.
        more = 'NONE'
        less = 'NONE'
        same_flag = True
    # return more, less, a flag indicating whether the values are the same (called same_flag), and the number of iterations to settling.
    return more, less, same_flag, iterations
示例#3
0
def learn_mag_circuit(learning_trials):
    # build the initial network. This network consists of a unit marking PO units settling, three time-in-comparison-cycle units (two connected to the unit makring PO settling, the other a gating unit connected to the PO units and active when both POs are active), and three MLS semantics (just semantic units randomly connected to the time-in-comparison-cycle units that will come to code invariant "more", "less", and "same" after learning). 
    settling_unit = dataTypes.basicTimingNode('settling', [], [], [])
    time_unit1, time_unit2 = dataTypes.basicTimingNode('A', [], [], []), dataTypes.basicTimingNode('B', [], [], [])
    time_unit3 = dataTypes.basicGateNode('gate', [], [])
    Local_inhib = dataTypes.localInhibitor()
    semantic1, semantic2, semantic3 = dataTypes.MLS_sem('semantic1', [], []), dataTypes.MLS_sem('semantic2', [], []), dataTypes.MLS_sem('semantic3', [], [])
    # set a POs flag indicating whether both POs are active after settling (to be used in learning magnitude vs. sameness; 1.0==both POs active after settling, 0.0==only one PO is active after settling). 
    POs = 0.0
    # create links between settling unit and timing units. Weights are random values between .5 and 1. 
    link1 = dataTypes.basicLink(settling_unit, time_unit1, 0.8)
    settling_unit.lower_connections.append(link1)
    time_unit1.higher_connections.append(link1)
    link2 = dataTypes.basicLink(settling_unit, time_unit2, 0.5)
    settling_unit.lower_connections.append(link2)
    time_unit2.higher_connections.append(link2)
    time_unit3.input_nodes.append(POs)
    # create links between timing units and semantics. 
    link3, link4, link5 = dataTypes.basicLink(time_unit1, semantic1, .5), dataTypes.basicLink(time_unit1, semantic2, .2), dataTypes.basicLink(time_unit1, semantic3, .2)
    time_unit1.lower_connections.append(link3)
    time_unit1.lower_connections.append(link4)
    time_unit1.lower_connections.append(link5)
    semantic1.higher_connections.append(link3)
    semantic2.higher_connections.append(link4)
    semantic3.higher_connections.append(link5)
    link6, link7, link8 = dataTypes.basicLink(time_unit2, semantic1, .2), dataTypes.basicLink(time_unit2, semantic2, .5), dataTypes.basicLink(time_unit2, semantic3, .2)
    time_unit2.lower_connections.append(link6)
    time_unit2.lower_connections.append(link7)
    time_unit2.lower_connections.append(link8)
    semantic1.higher_connections.append(link6)
    semantic2.higher_connections.append(link7)
    semantic3.higher_connections.append(link8)
    link9, link10, link11 = dataTypes.basicLink(time_unit3, semantic1, .2), dataTypes.basicLink(time_unit3, semantic2, .2), dataTypes.basicLink(time_unit3, semantic3, .5)
    time_unit3.output_nodes.append(link9)
    time_unit3.output_nodes.append(link10)
    time_unit3.output_nodes.append(link11)
    semantic1.higher_connections.append(link9)
    semantic2.higher_connections.append(link10)
    semantic3.higher_connections.append(link11)
    # finally, set up lateral connections. These are not established by links, but rather any nodes in the same layer are placed in one-another's .lateral_connections field. Timing units and MLS semantics are all laterally inhibitory. 
    time_unit1.lateral_connections.append(time_unit2)
    time_unit1.lateral_connections.append(time_unit3)
    time_unit2.lateral_connections.append(time_unit1)
    time_unit2.lateral_connections.append(time_unit3)
    semantic1.lateral_connections.append(semantic2)
    semantic1.lateral_connections.append(semantic3)
    semantic2.lateral_connections.append(semantic1)
    semantic2.lateral_connections.append(semantic3)
    semantic3.lateral_connections.append(semantic1)
    semantic3.lateral_connections.append(semantic2)
    # put the units in arrays. 
    time_units = [time_unit1, time_unit2]
    gate_units = [time_unit3]
    MLS_semantics = [semantic1, semantic2, semantic3]
    # set gamma and delta for leaky integrator activation function. 
    gamma, delta = 0.3, 0.1
    # start the training process. 
    for train_instance in range(learning_trials):
        # is this a trial when both POs are active or not? 
        rand_num = random.random()
        if rand_num > .5:
            same_flag = False
            gate_units[0].input_nodes[0] = 0.0
        else:
            same_flag = True
            gate_units[0].input_nodes[0] = 1.0
        # activate unit indicating settling. 
        settling_unit.act = 1.0
        # for n iterations, until the LI fires, run the network. 
        for iteration in range(110):
            # three units (marking time-in-comparison-cycle) compete to become active. 
            # update the input of time-in-cycle and semantic units. 
            for unit in time_units:
                unit.update_input()
            for unit in gate_units:
                unit.update_input()
            for unit in MLS_semantics:
                unit.update_input()
            # get max_sem_input. 
            max_sem_input = 0.0
            for semantic in MLS_semantics:
                if semantic.input > max_sem_input:
                    max_sem_input = semantic.input
            # subtractive normalisation. 
            for semantic in MLS_semantics:
                if semantic.input < max_sem_input:
                    semantic.input -= max_sem_input
            # then updat max_sem_input for divisive normalisation. 
            for semantic in MLS_semantics:
                semantic.set_max_sem_input(max_sem_input)
            # update the activation and clear the input of time-in-cycle and semantic units. 
            for unit in time_units:
                unit.update_act(gamma, delta)
                print 'input = ', str(unit.input), '\tact = ', str(unit.act), '\n'
                unit.clear_input()
            for unit in gate_units:
                unit.update_act()
                unit.clear_input()
            for unit in MLS_semantics:
                unit.update_act()
                print unit.name, ' ', str(unit.act)
                unit.clear_input()
            # update weights from time-in-comparison-cycle units to MLS semantics if iteration >= 3. 
            if iteration >= 3:
                for unit in time_units:
                    unit.adjust_links()
                for unit in gate_units:
                    unit.adjust_links()
        # after n iterations, if same_flag is False, then fire the local inhibitor, which inhibits time-in-comparison-cycle units and MLS semantics. 
        if not same_flag:
            active_unit = None
            max_act = 0.0
            for unit in time_units:
                if unit.act > max_act:
                    active_unit = unit
            active_unit.time_since_fired = 1
        for unit in time_units:
            unit.clear_inputandact()
        for semantic in MLS_semantics:
            semantic.clear_all()
        # for n further iterations, run the network. 
        for iteration in range(110):
            # three units (marking time-in-comparison-cycle) compete to become active. 
            # update the input of time-in-cycle and semantic units. 
            for unit in time_units:
                unit.update_input()
            for unit in gate_units:
                unit.update_input()
            for unit in MLS_semantics:
                unit.update_input()
            # get max sem input. 
            max_sem_input = 0.0
            for semantic in MLS_semantics:
                if semantic.input > max_sem_input:
                    max_sem_input = semantic.input
            # subtractive normalisation. 
            for semantic in MLS_semantics:
                if semantic.input < max_sem_input:
                    semantic.input -= max_sem_input
            # then update max_sem_input for divisive normalisation. 
            for semantic in MLS_semantics:
                semantic.set_max_sem_input(max_sem_input)
            # update the activation and clear the input of time-in-cycle and semantic units. 
            for unit in time_units:
                unit.update_act(gamma, delta)
                print 'input = ', str(unit.input), '\tact = ', str(unit.act), '\n'
                unit.clear_input()
            for unit in gate_units:
                unit.update_act()
                unit.clear_input()
            for unit in MLS_semantics:
                unit.update_act()
                print unit.name, ' ', str(unit.act)
                unit.clear_input()
            # update weights from time-in-comparison-cycle units to MLS semantics if iteration >= 3. 
            if iteration >= 3:
                for unit in time_units:
                    unit.adjust_links()
                for unit in gate_units:
                    unit.adjust_links()
        # after n iterations, end the learning cycle and clear all units. 
        for unit in time_units:
            unit.clear_all()
        for unit in gate_units:
            unit.clear_all()
        for unit in MLS_semantics:
            unit.clear_all()
    # END. The semantic unit connected to the time-in-comparison-cycle unit that fires first with activation to the settling unit is the "more" semantic, the semantic unit connected to the time-in-comparison-cycle unit that fires second with activation to the settling unit is the "less" semantic, and the semantic unit connected to the gating time-in-comparison-cycle unit is the "same" semantic. 
    # print settling unit's connections.
    for link in settling_unit.lower_connections:
        print 'Settling unit to ', link.mylowernode.name, ' weight = ', str(link.weight), '\n'
    print '\n'
    # print timing units' connections. 
    for unit in time_units:
        for link in unit.lower_connections:
            print unit.name, ' to ', link.mylowernode.name, ' weight = ', str(link.weight), '\n'
    print '\n'
    # print gating unit's connections. 
    for link in gate_units[0].output_nodes:
        print gate_units[0].name, ' to ', link.mylowernode.name, ' weight = ', str(link.weight), '\n'
    print '\n'
def learn_energy_circuit(learning_trials):
    # architecture is 4 E nodes, 6 A nodes, and 10 semantics.
    # make the guassian E nodes.
    Enode1 = dataTypes.gaussian_E_Node('E1', [], [], [], 1, .3)
    Enode2 = dataTypes.gaussian_E_Node('E2', [], [], [], 1, .1)
    Enode3 = dataTypes.gaussian_E_Node('E1', [], [], [], 2, .3)
    Enode4 = dataTypes.gaussian_E_Node('E2', [], [], [], 2, .1)
    Enodes = [Enode1, Enode2, Enode3, Enode4]
    # make the semantics.
    semantics = []
    for i in range(10):
        new_sem = dataTypes.MLS_sem(str(i), [], [])
        semantics.append(new_sem)
    # make proxy POs.
    PO1 = dataTypes.basicTimingNode('PO1', [], [], [])
    PO2 = dataTypes.basicTimingNode('PO2', [], [], [])
    POs = [PO1, PO2]
    # connect proxy POs to E nodes.
    for PO in POs:
        for Enode in Enodes:
            new_link = dataTypes.basicLink(PO, Enode, 1.0)
            Enode.higher_connections.append(new_link)
    # connect the E nodes to semantics and update lateral_connections for E nodes (for lateral inhibition).
    for Enode in Enodes:
        Enode.lateral_connections = Enodes
        for semantic in semantics:
            new_link = dataTypes.basicLink(Enode, semantic, random.random())
            Enode.lower_connections.append(new_link)
            semantic.higher_connections.append(new_link)

    # leaning.
    for i in range(learning_trials):
        # set activation of PO proxys.
        same_trial = random.random()
        if same_trial > .5:
            PO1.act = 1.0
            same_trial = False
        else:
            PO1.act, PO2.act = 1.0, 1.0
            same_trial = True
        #pdb.set_trace()
        # until the local inhibitor fires (i.e., while the first PO is active), update inputs, activations, and weights.
        for i in range(110):
            # update inputs to all units.
            for Enode in Enodes:
                Enode.update_input()
            for semantic in semantics:
                semantic.update_input()
            # get max_sem_input.
            max_sem_input = 0.0
            for semantic in semantics:
                if semantic.input > max_sem_input:
                    max_sem_input = semantic.input
            # subtractive normalisation.
            for semantic in semantics:
                if semantic.input < max_sem_input:
                    semantic.input -= max_sem_input
            # then update max_sem_input for divisive normalisation.
            for semantic in semantics:
                semantic.set_max_sem_input(max_sem_input)
            #pdb.set_trace()
            # update activation and clear the input of all units.
            for Enode in Enodes:
                Enode.update_act()
                Enode.clear_input()
            for semantic in semantics:
                semantic.update_act()
                semantic.clear_input()
            #pdb.set_trace()
            # learning.
            if i >= 20:
                for Enode in Enodes:
                    Enode.adjust_links()
        # after n iterations, if same_trial is False, then fire the local inhibitor, which inhibits all units, and start time since last fired of the most active A unit.
        if not same_trial:
            active_unit = None
            max_act = 0.0
            for Enode in Enodes:
                if Enode.act > max_act:
                    active_unit = Enode
            active_unit.time_since_fired = 1
        for Enode in Enodes:
            Enode.clear_input_and_act()
        for semantic in semantics:
            semantic.clear_all()
        # until the global inhibitor fires (i.e., while second PO is active), update inputs, activations, and weights.
        for i in range(110):
            # update inputs to all units.
            for Enode in Enodes:
                Enode.update_input()
            for semantic in semantics:
                semantic.update_input()
            # get max_sem_input.
            max_sem_input = 0.0
            for semantic in semantics:
                if semantic.input > max_sem_input:
                    max_sem_input = semantic.input
            # subtractive normalisation.
            for semantic in semantics:
                if semantic.input < max_sem_input:
                    semantic.input -= max_sem_input
            # then update max_sem_input for divisive normalisation.
            for semantic in semantics:
                semantic.set_max_sem_input(max_sem_input)
            #pdb.set_trace()
            # update activation of all units.
            for Enode in Enodes:
                Enode.update_act()
                Enode.clear_input()
            for semantic in semantics:
                semantic.update_act()
                semantic.clear_input()
            #pdb.set_trace()
            # learning.
            if i >= 20:
                for Enode in Enodes:
                    Enode.adjust_links()
        # now fire global inhibitor.
        for Enode in Enodes:
            Enode.clear_all()
        for semantic in semantics:
            semantic.clear_all()
    # returns.
    return [POs, Enodes, semantics]