output, metadata = D.readLearningResults(filename) output_vec.append(output) metadata_vec.append(metadata) filename_vec.append(filename) print('files = [') for f in filename_vec: print("\'"+f+"\',") print(']') ## PLOT A = Analyze() savename = 'Burgers_MC_CDF' A.plotRMSEandCoefs(output_vec, MCcountvec, '$N_{MC}$, Number of Realizations', threshold=0.01, set_grid=False, cdf=True, invert_sign=True, savename='Burgers_MC_CDF') ############## ##Function of Regularization - For MC = num_realizations (MAX) ## WTF?? # fig, ax = plt.subplots(1, 2) # alphas, mse = A.getRegMseDependence_single(output_vec[-1]) # ax[0].plot(alphas, mse) # ax[0].set_xlabel('Regularization Coefficient') # ax[0].set_ylabel('MSE') # alphas, coefficients, feats = A.getCoefRegDependence(output_vec[-1], threshold=0.0) # for i in range(len(feats)): # ax[1].plot(alphas, coefficients[i]) # ax[1].set_xlabel('Regularization Coefficient')
# READ Learning D = DataIO(case, directory=LEARNDIR) output, metadata = D.readLearningResults(filename) output_vec.append(output) metadata_vec.append(metadata) filename_vec.append(filename) print('files = [') for f in filename_vec: print("\'" + f + "\',") print(']') ## PLOT A = Analyze() savename = 'advectreact_rde' A.plotRMSEandCoefs(output_vec, rfe_alpha_vec, 'Percentage Distance from Boundary', threshold=0.01, invert_sign=True, savename=savename) # Plot boundary s = 8 V = Visualize(grid) V.plot_fu3D(fu) V.plot_fu(fu, dim='t', steps=s) V.plot_fu(fu, dim='x', steps=s) V.show()
output_vec.append(output) metadata_vec.append(metadata) filename_vec.append(filename) print('files = [') for f in filename_vec: print("\'" + f + "\',") print(']') ## PLOT A = Analyze() savename = 'advectreact_MC' + "_" + LassoType + "_" + str(mu[0]).split('.')[1] A.plotRMSEandCoefs(output_vec, MCcountvec, 'Number of Realizations', threshold=0.01, invert_sign=True, use_logx=False, set_grid=True, savename=savename) ## PLOT 3D # s = 8 # V = Visualize(grid) # V.plot_fu3D(fu) # V.plot_fu(fu, dim='t', steps=s) # V.plot_fu(fu, dim='x', steps=s) # V.show()
trainratio=trainratio, verbose=printlearning) filename = difflearn.fit_sparse(feature_opt=feature_opt, variableCoef=variableCoef, variableCoefBasis=variableCoefBasis, \ variableCoefOrder=coeforder, use_rfe=use_rfe, rfe_alpha=rfe_alpha, nzthresh=nzthresh, maxiter=maxiter, \ LassoType=LassoType, RegCoef=RegCoef, cv=cv, criterion=criterion, print_rfeiter=print_rfeiter, shuffle=shuffle, \ basefile=savenamepdf, adjustgrid=adjustgrid, save=save, normalize=normalize, comments=comments) # READ Learning D = DataIO(case, directory=LEARNDIR) output, metadata = D.readLearningResults(filename) output_vec.append(output) metadata_vec.append(metadata) filename_vec.append(filename) ## PLOT # Error function of MC A = Analyze() savename = 'Burgers_rfe' A.plotRMSEandCoefs(output_vec, rfe_alpha_vec, 'RFE Threshold', threshold=0.01, invert_sign=True, savename=savename) plt.show() # Plot Coefficients as a function of t0
output_vec.append(output) metadata_vec.append(metadata) filename_vec.append(filename) ## PLOT # Error function of MC # fig = plt.figure() A = Analyze() savename = 'Burgers_shock' portion = [(t[1] - 0.5) / (t[1] - t[0]) for t in mtvec] A.plotRMSEandCoefs(output_vec, portion, '$p_s$, Time Portion in Shock Region', threshold=0.01, invert_sign=True, cdf=True, set_grid=False, savename='Burgers_shock') # trainRMSE, testRMSE = A.getTrainTestDependence(output_vec) # t0 = [t[0] for t in mtvec] # plt.plot(t0, testRMSE, linwidth=3) # plt.plot(t0, trainRMSE, linwidth=3) # plt.xlabel('Initial Time (0.5 duration)', fontsize=14) # plt.ylabel('Test Error', fontsize=14) # plt.legend(['Test Error', 'Train Error'], fontsize=14) # # Plot Coefficients as a function of t0 # fig = plt.figure()
output, metadata = D.readLearningResults(filename) output_vec.append(output) metadata_vec.append(metadata) filename_vec.append(filename) print('files = [') for f in filename_vec: print("\'" + f + "\',") print(']') ## PLOT A = Analyze() savename = 'advectreact_rfe' + "_" + feature_opt + "_" + LassoType + "_" + str( coeforder) A.plotRMSEandCoefs(output_vec, rfe_alpha_vec, 'RFE Threshold', threshold=0.001, use_logx=True, set_grid=True, invert_sign=True, savename=savename, show=True) except: print("\n\n\n************************\n\n\n") print("Exception Happened for ", feature_opt, " ", LassoType, " ", rfe_alpha) print("\n\n\n************************\n\n\n")