def main():

    file_name = '//local/data/esrf/scan.edf'
    dark_file_name = '/local/data/esrf/dark.edf'
    white_file_name = '/local/data/esrf/flat.edf'
    hdf5_file_name = '/local/data/esrf_test.h5'
    sample_name = 'esrf'

    verbose = True

    if verbose: print file_name
    if verbose: print white_file_name
    if verbose: print hdf5_file_name
#    if verbose: print log_file

    mydata = Convert()
    # Create minimal hdf5 file
    if verbose: print "Reading data ... "
    mydata.stack(file_name,
                   hdf5_file_name = hdf5_file_name,
                   white_file_name = white_file_name,
                   dark_file_name = dark_file_name,
                   projections_data_type = 'edf',
                   white_data_type = 'edf',
                   dark_data_type = 'edf',
                   sample_name = sample_name
                   )
    if verbose: print "Done reading data ... "

     
    # Add extra metadata if available

    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a') 

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry( DataExchangeEntry.instrument(name={'value': 'ESRF'}) )

    # Create HDF5 subgroup
    # /measurement/instrument/source
    f.add_entry( DataExchangeEntry.source(name={'value': 'ESRF'},
                                        date_time={'value': "2014-12-05T19:42:13+0100"},
                                        beamline={'value': "ID-19"},
                                        )
    )

    # /measurement/experimenter
    f.add_entry( DataExchangeEntry.experimenter(name={'value':"Emmanuelle"},
                                                role={'value':"Project PI"},
                    )
        )

    f.close()
    if verbose: print "Done converting ", file_name
def main():

    file_name = '/local/data/databank/Diamond/projections_13429.hdf'
    hdf5_file_name = '/local/data/databank/dataExchange/microCT/Diamond_2bin.h5'

    verbose = True

    print "Input files base name: ", file_name
    print "Output data exchange file name: ", hdf5_file_name

    mydata = Convert()
    # Create minimal hdf5 file
    if verbose: print "Reading data ... "
    mydata.nexus(file_name,
                        hdf5_file_name = hdf5_file_name,
                        projections_start=20,
                        projections_end=1820,
                        projections_step=2,
                        white_start=11,
                        white_end=20,
                        dark_start=1,
                        dark_end=3,
                        sample_name = 'unknown'
                   )
    if verbose: print "Done reading data ... "
    
    # Add extra metadata if available

    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a') 

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry( DataExchangeEntry.instrument(name={'value': 'Diamond I12'}) )

    ### Create HDF5 subgroup
    ### /measurement/instrument/source
    f.add_entry( DataExchangeEntry.source(name={'value': "Diamond Light Source"},
                                        date_time={'value': "2013-11-30T19:17:04+0100"},
                                        beamline={'value': "JEEP I12"},
                                        )
    )

    # Create HDF5 subgroup
    # /measurement/experimenter
    f.add_entry( DataExchangeEntry.experimenter(name={'value':"Michael Drakopoulos"},
                                                role={'value':"Project PI"},
                    )
        )

    f.close()
    print "Done creating data exchange file: ", hdf5_file_name
def main():

    file_name = '/local/data/databank/APS_13_BM/run2_soln1_2_.SPE'
    hdf5_file_name = '/local/data/databank/dataExchange/microCT/run2_soln1_2.h5'

    verbose = True

    if verbose: print "Input files base name: ", file_name
    if verbose: print "Output data exchange file name: ", hdf5_file_name

    mydata = Convert()
    # Create minimal hdf5 file
    if verbose: print "Reading data ... "
    mydata.multiple_stack(file_name,
                        hdf5_file_name = hdf5_file_name,
                        projections_start=2,
                        projections_end=7,
                        projections_step=2,
                        white_start=1,
                        white_end=8,
                        white_step=2,
                        sample_name = 'Stripe_Solder_Sample_Tip1'
                   )
    if verbose: print "Done reading data ... "
    
    # Add extra metadata if available

    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a') 

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry( DataExchangeEntry.instrument(name={'value': 'APS 13-BM'}) )

    ### Create HDF5 subgroup
    ### /measurement/instrument/source
    f.add_entry( DataExchangeEntry.source(name={'value': "Advanced Photon Source"},
                                        date_time={'value': "2013-11-30T19:17:04+0100"},
                                        beamline={'value': "13-BM"},
                                        )
    )

    # Create HDF5 subgroup
    # /measurement/experimenter
    f.add_entry( DataExchangeEntry.experimenter(name={'value':"Mark Rivers"},
                                                role={'value':"Project PI"},
                    )
        )

    f.close()
    if verbose: print "Done creating data exchange file: ", hdf5_file_name
示例#4
0
def main():

    file_name = '/local/data/databank/Diamond/projections_13429.hdf'
    hdf5_file_name = '/local/data/databank/dataExchange/microCT/Diamond_2bin.h5'

    mydata = Convert()
    # Create minimal hdf5 file
    if verbose: print "Reading data ... "
    mydata.nexus(file_name,
                        hdf5_file_name = hdf5_file_name,
                        projections_start=20,
                        projections_end=1820,
                        projections_step=2,
                        white_start=11,
                        white_end=20,
                        dark_start=1,
                        dark_end=3,
                        sample_name = 'unknown'
                   )
    
    # Add extra metadata if available / desired

    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a') 

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry( DataExchangeEntry.instrument(name={'value': 'Diamond I12'}) )

    ### Create HDF5 subgroup
    ### /measurement/instrument/source
    f.add_entry( DataExchangeEntry.source(name={'value': "Diamond Light Source"},
                                        date_time={'value': "2013-11-30T19:17:04+0100"},
                                        beamline={'value': "JEEP I12"},
                                        )
    )

    # Create HDF5 subgroup
    # /measurement/experimenter
    f.add_entry( DataExchangeEntry.experimenter(name={'value':"Michael Drakopoulos"},
                                                role={'value':"Project PI"},
                    )
        )

    f.close()
    print "Done creating data exchange file: ", hdf5_file_name
示例#5
0
    def xtomo_exchange(
        self,
        data,
        data_white=None,
        data_dark=None,
        theta=None,
        data_exchange_type=None,
        source_name=None,
        source_mode=None,
        source_datetime=None,
        beamline=None,
        energy=None,
        current=None,
        actual_pixel_size=None,
        experimenter_name=None,
        experimenter_affiliation=None,
        experimenter_email=None,
        instrument_comment=None,
        sample_name=None,
        sample_comment=None,
        acquisition_mode=None,
        acquisition_comment=None,
        sample_position_x=None,
        sample_position_y=None,
        sample_position_z=None,
        sample_image_shift_x=None,
        sample_image_shift_y=None,
        image_exposure_time=None,
        image_time=None,
        image_theta=None,
        hdf5_file_name=None,
        axes="theta:y:x",
        log="INFO",
    ):
        """ 
        Write 3-D data to a data-exchange file.

        Parameters
                    
        data : ndarray
            3-D X-ray absorption tomography raw data.
            Size of the dimensions should be:
            [projections, slices, pixels].
            
        data_white, data_dark : ndarray, optional
            3-D white-field/dark_field data. Multiple
            projections are stacked together to obtain
            a 3-D matrix. 2nd and 3rd dimensions should
            be the same as data: [shots, slices, pixels].
            
        theta : ndarray, optional
            Data acquisition angles corresponding
            to each projection.

        data_excahnge_type : str, optional
            label defyining the type of data contained in data exchange file
            for raw data tomography data use 'tomography_raw_projections'

        source_name, source_mode, source_datetime : str, optional
            label defining the source name, operation mode and date/time when these values were taken

        beamline : str, optional
            label defining the beamline name
        
        energy, current : float, optional
            X-ray energy and bean current

        actual_pixel_size : float, optional
            pixel size on the sample plane
 
        experimenter_name, experimenter_affiliation, experimenter_email : str, optional
            user name, affiliation and e-mail address

        instrument_comment : str, optional
            instrument comment

        sample_name, sample_comment : str, optional
            sample name and comment
        
        acquisition_mode, acquisition_comment : str, optional
            acquisition mode and comment

        hd5_file_name : str
            Output file.

        Notes
        -----
        If file exists, does nothing
                
        Examples
        
        - Convert tomographic projection series (raw, dark, white)  of tiff in data exchange:
            
            >>> import dataexchange

            >>> file_name = '/local/dataraid/databank/Anka/radios/image_.tif'
            >>> dark_file_name = '/local/dataraid/databank/Anka/darks/image_.tif'
            >>> white_file_name = '/local/dataraid/databank/Anka/flats/image_.tif'

            >>> hdf5_file_name = '/local/dataraid/databank/dataExchange/tmp/Anka.h5'

            >>> projections_start = 0
            >>> projections_end = 3167
            >>> white_start = 0
            >>> white_end = 100
            >>> dark_start = 0
            >>> dark_end = 100

            >>> sample_name = 'Anka'
            >>> 
            >>> # Read raw data
            >>> read = dataexchange.Import()
            >>> data, white, dark, theta = read.xtomo_raw(file_name,
            >>>                                                    projections_start = projections_start,
            >>>                                                    projections_end = projections_end,
            >>>                                                    white_file_name = white_file_name,
            >>>                                                    white_start = white_start,
            >>>                                                    white_end = white_end,
            >>>                                                    dark_file_name = dark_file_name,
            >>>                                                    dark_start = dark_start,
            >>>                                                    dark_end = dark_end,
            >>>                                                    projections_digits = 5,
            >>>                                                    log='INFO'
            >>>                                                    )
            >>>
            >>> # Save data
            >>> write = dataexchange.Export()
            >>> write.xtomo_exchange(data = data,
            >>>                       data_white = white,
            >>>                       data_dark = dark,
            >>>                       theta = theta,
            >>>                       hdf5_file_name = hdf5_file_name,
            >>>                       data_exchange_type = 'tomography_raw_projections',
            >>>                       sample_name = sample_name
            >>>                       )

        """

        if hdf5_file_name != None:
            if os.path.isfile(hdf5_file_name):
                self.logger.error("Data Exchange file: [%s] already exists", hdf5_file_name)
            else:
                # Create new folder.
                dirPath = os.path.dirname(hdf5_file_name)
                if not os.path.exists(dirPath):
                    os.makedirs(dirPath)

                # Get the file_name in lower case.
                lFn = hdf5_file_name.lower()

                # Split the string with the delimeter '.'
                end = lFn.split(".")

                # Write the Data Exchange HDF5 file.
                # Open DataExchange file
                f = DataExchangeFile(hdf5_file_name, mode="w")

                self.logger.info("Creating Data Exchange File [%s]", hdf5_file_name)

                # Create core HDF5 dataset in exchange group for projections_theta_range
                # deep stack of x,y images /exchange/data
                self.logger.info("Adding projections to Data Exchange File [%s]", hdf5_file_name)
                f.add_entry(
                    DataExchangeEntry.data(
                        data={"value": data, "units": "counts", "description": "transmission", "axes": axes}
                    )
                )
                #                f.add_entry( DataExchangeEntry.data(data={'value': data, 'units':'counts', 'description': 'transmission', 'axes':'theta:y:x', 'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} }))
                if theta != None:
                    f.add_entry(DataExchangeEntry.data(theta={"value": theta, "units": "degrees"}))
                    self.logger.info("Adding theta to Data Exchange File [%s]", hdf5_file_name)
                else:
                    self.logger.warning("theta is not defined")
                if data_dark != None:
                    self.logger.info("Adding dark fields to  Data Exchange File [%s]", hdf5_file_name)
                    f.add_entry(
                        DataExchangeEntry.data(
                            data_dark={"value": data_dark, "units": "counts", "axes": "theta_dark:y:x"}
                        )
                    )
                #                    f.add_entry( DataExchangeEntry.data(data_dark={'value': data_dark, 'units':'counts', 'axes':'theta_dark:y:x', 'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} }))
                else:
                    self.logger.warning("data dark is not defined")
                if data_white != None:
                    self.logger.info("Adding white fields to  Data Exchange File [%s]", hdf5_file_name)
                    f.add_entry(
                        DataExchangeEntry.data(
                            data_white={"value": data_white, "units": "counts", "axes": "theta_white:y:x"}
                        )
                    )
                #                    f.add_entry( DataExchangeEntry.data(data_white={'value': data_white, 'units':'counts', 'axes':'theta_white:y:x', 'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} }))
                else:
                    self.logger.warning("data white is not defined")
                if data_exchange_type != None:
                    self.logger.info("Adding data type to  Data Exchange File [%s]", hdf5_file_name)
                    f.add_entry(DataExchangeEntry.data(title={"value": data_exchange_type}))

                if source_name != None:
                    f.add_entry(DataExchangeEntry.source(name={"value": source_name}))
                if source_mode != None:
                    f.add_entry(DataExchangeEntry.source(mode={"value": source_mode}))
                if source_datetime != None:
                    f.add_entry(DataExchangeEntry.source(datetime={"value": source_datetime}))

                if beamline != None:
                    f.add_entry(DataExchangeEntry.source(beamline={"value": beamline}))
                if energy != None:
                    f.add_entry(
                        DataExchangeEntry.monochromator(
                            energy={"value": energy, "units": "keV", "dataset_opts": {"dtype": "d"}}
                        )
                    )
                if current != None:
                    f.add_entry(
                        DataExchangeEntry.source(
                            current={"value": current, "units": "mA", "dataset_opts": {"dtype": "d"}}
                        )
                    )

                if actual_pixel_size != None:
                    f.add_entry(
                        DataExchangeEntry.detector(
                            actual_pixel_size_x={
                                "value": actual_pixel_size,
                                "units": "microns",
                                "dataset_opts": {"dtype": "d"},
                            },
                            actual_pixel_size_y={
                                "value": actual_pixel_size,
                                "units": "microns",
                                "dataset_opts": {"dtype": "d"},
                            },
                        )
                    )

                if experimenter_name != None:
                    f.add_entry(DataExchangeEntry.experimenter(name={"value": experimenter_name}))
                if experimenter_affiliation != None:
                    f.add_entry(DataExchangeEntry.experimenter(affiliation={"value": experimenter_affiliation}))
                if experimenter_email != None:
                    f.add_entry(DataExchangeEntry.experimenter(email={"value": experimenter_email}))

                if instrument_comment != None:
                    f.add_entry(DataExchangeEntry.instrument(comment={"value": instrument_comment}))
                if sample_name == None:
                    sample_name = end[0]
                    f.add_entry(
                        DataExchangeEntry.sample(
                            name={"value": sample_name},
                            description={
                                "value": "Sample name assigned by the HDF5 converter and based on the HDF5 file name"
                            },
                        )
                    )
                else:
                    f.add_entry(DataExchangeEntry.sample(name={"value": sample_name}))
                if sample_comment != None:
                    f.add_entry(DataExchangeEntry.sample(comment={"value": sample_comment}))

                if acquisition_mode != None:
                    f.add_entry(DataExchangeEntry.acquisition(mode={"value": acquisition_mode}))
                if acquisition_comment != None:
                    f.add_entry(DataExchangeEntry.acquisition(comment={"value": acquisition_comment}))

                if sample_position_x != None:
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            sample_position_x={
                                "value": sample_position_x,
                                "units": "microns",
                                "dataset_opts": {"dtype": "d"},
                            }
                        )
                    )
                if sample_position_y != None:
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            sample_position_y={
                                "value": sample_position_y,
                                "units": "microns",
                                "dataset_opts": {"dtype": "d"},
                            }
                        )
                    )
                if sample_position_z != None:
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            sample_position_z={
                                "value": sample_position_z,
                                "units": "microns",
                                "dataset_opts": {"dtype": "d"},
                            }
                        )
                    )
                if sample_image_shift_x != None:
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            sample_image_shift_x={
                                "value": sample_image_shift_x,
                                "units": "microns",
                                "dataset_opts": {"dtype": "d"},
                            }
                        )
                    )
                if sample_image_shift_y != None:
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            sample_image_shift_y={
                                "value": sample_image_shift_y,
                                "units": "microns",
                                "dataset_opts": {"dtype": "d"},
                            }
                        )
                    )

                if image_exposure_time != None:
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            image_exposure_time={
                                "value": image_exposure_time,
                                "units": "s",
                                "dataset_opts": {"dtype": "d"},
                            }
                        )
                    )
                if image_time != None:
                    f.add_entry(DataExchangeEntry.acquisition(image_time={"value": image_time}))
                if image_theta != None:
                    f.add_entry(DataExchangeEntry.acquisition(image_theta={"value": image_theta, "units": "degrees"}))
                f.close()
                self.logger.info("DONE!!!!. Created Data Exchange File [%s]", hdf5_file_name)

        else:
            self.logger.warning("Nothing to do ...")
def main():

    ##file_name = '/local/data/databank/SLS_2011/Blakely_SLS/Blakely.tif'
    ##log_file = '/local/data/databank/SLS_2011/Blakely_SLS/Blakely.log'
    ##
    ##hdf5_file_name = '/local/data/databank/dataExchange/microCT/Blakely_SLS_2011.h5'

    file_name = '/local/data/databank/SLS_2011/Hornby_SLS/Hornby_b.tif'
    log_file = '/local/data/databank/SLS_2011/Hornby_SLS/Hornby.log'

    hdf5_file_name = '/local/data/databank/dataExchange/microCT/Hornby_SLS_2011.h5'

    verbose = True

    if verbose: print file_name
    if verbose: print log_file
    if verbose: print hdf5_file_name



    #Read input SLS data
    file = open(log_file, 'r')
    if verbose: print '###############################'
    for line in file:
        if 'Number of darks' in line:
            NumberOfDarks = re.findall(r'\d+', line)
            if verbose: print 'Number of Darks', NumberOfDarks[0]
        if 'Number of flats' in line:
            NumberOfFlats = re.findall(r'\d+', line)
            if verbose: print 'Number of Flats', NumberOfFlats[0]
        if 'Number of projections' in line:
            NumberOfProjections = re.findall(r'\d+', line)
            if verbose: print 'Number of Projections', NumberOfProjections[0]
        if 'Number of inter-flats' in line:
            NumberOfInterFlats = re.findall(r'\d+', line)
            if verbose: print 'Number of inter-flats', NumberOfInterFlats[0]
        if 'Inner scan flag' in line:
            InnerScanFlag = re.findall(r'\d+', line)
            if verbose: print 'Inner scan flag', InnerScanFlag[0]
        if 'Flat frequency' in line:
            FlatFrequency = re.findall(r'\d+', line)
            if verbose: print 'Flat frequency', FlatFrequency[0]
        if 'Rot Y min' in line:
            RotYmin = re.findall(r'\d+.\d+', line)
            if verbose: print 'Rot Y min', RotYmin[0]
        if 'Rot Y max' in line:
            RotYmax = re.findall(r'\d+.\d+', line)
            if verbose: print 'Rot Y max', RotYmax[0]
        if 'Angular step' in line:
            AngularStep = re.findall(r'\d+.\d+', line)
            if verbose: print 'Angular step', AngularStep[0]
    if verbose: print '###############################'
    file.close()

    dark_start = 1
    dark_end = int(NumberOfDarks[0]) + 1
    white_start = dark_end
    white_end = white_start + int(NumberOfFlats[0])
    projections_start = white_end
    projections_end = projections_start + int(NumberOfProjections[0])

    if verbose: print dark_start, dark_end
    if verbose: print white_start, white_end
    if verbose: print projections_start, projections_end

    dark_start = 1
    dark_end = 21
    white_start = 21
    white_end = 221
    projections_start = 221
    projections_end = 1662

    ### if testing uncomment
    ##dark_end = 4
    ##white_end = 24
    ##projections_end = 224

    mydata = Convert()
    # Create minimal hdf5 file
    mydata.series_of_images(file_name,
                     hdf5_file_name,
                     projections_start,
                     projections_end,
                     white_start = white_start,
                     white_end = white_end,
                     dark_start = dark_start,
                     dark_end = dark_end,
                     verbose = False
                     )

     
    # Add extra metadata if available

    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a') 

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry( DataExchangeEntry.instrument(name={'value': 'Tomcat'}) )

    # Create HDF5 subgroup
    # /measurement/instrument/source
    f.add_entry( DataExchangeEntry.source(name={'value': 'Swiss Light Source'},
                                        date_time={'value': "2010-11-08T14:51:56+0100"},
                                        beamline={'value': "Tomcat"},
                                        current={'value': 401.96, 'units': 'mA', 'dataset_opts': {'dtype': 'd'}},
                                        )
    )

    # Create HDF5 subgroup
    # /measurement/instrument/monochromator
    f.add_entry( DataExchangeEntry.monochromator(type={'value': 'Multilayer'},
                                                energy={'value': 19.260, 'units': 'keV', 'dataset_opts': {'dtype': 'd'}},
                                                mono_stripe={'value': 'Ru/C'},
                                                )
        )

    # Create HDF5 subgroup
    # /measurement/experimenter
    f.add_entry( DataExchangeEntry.experimenter(name={'value':"Federica Marone"},
                                                role={'value':"Project PI"},
                                                affiliation={'value':"Swiss Light Source"},
                                                phone={'value':"+41 56 310 5318"},
                                                email={'value':"*****@*****.**"},

                    )
        )

    # Create HDF5 subgroup
    # /measurement/instrument/detector
    f.add_entry( DataExchangeEntry.detector(manufacturer={'value':'CooKe Corporation'},
                                            model={'value': 'pco dimax'},
                                            serial_number={'value': '1234XW2'},
                                            bit_depth={'value': 12, 'dataset_opts':  {'dtype': 'd'}},
                                            x_pixel_size={'value': 6.7e-6, 'dataset_opts':  {'dtype': 'f'}},
                                            y_pixel_size={'value': 6.7e-6, 'dataset_opts':  {'dtype': 'f'}},
                                            x_dimensions={'value': 2048, 'dataset_opts':  {'dtype': 'i'}},
                                            y_dimensions={'value': 2048, 'dataset_opts':  {'dtype': 'i'}},
                                            x_binning={'value': 1, 'dataset_opts':  {'dtype': 'i'}},
                                            y_binning={'value': 1, 'dataset_opts':  {'dtype': 'i'}},
                                            operating_temperature={'value': 270, 'units':'K', 'dataset_opts':  {'dtype': 'f'}},
                                            exposure_time={'value': 170, 'units':'ms', 'dataset_opts':  {'dtype': 'd'}},
                                            frame_rate={'value': 3, 'dataset_opts':  {'dtype': 'i'}},
                                            output_data={'value':'/exchange'}
                                            )
        )

    f.add_entry(DataExchangeEntry.objective(magnification={'value':10, 'dataset_opts': {'dtype': 'd'}},
                                        )
        )

    f.add_entry(DataExchangeEntry.scintillator(name={'value':'LuAg '},
                                                type={'value':'LuAg'},
                                                scintillating_thickness={'value':20e-6, 'dataset_opts': {'dtype': 'd'}},
            )
        )

    # Create HDF5 subgroup
    # /measurement/experiment
    f.add_entry( DataExchangeEntry.experiment( proposal={'value':"e11218"},
                )
        )
    f.close()
    if verbose: print "Done converting ", file_name
示例#7
0
def main():

    file_name = '/local/data/databank/TXM_26ID/Miller1/ABR_1SP_.tif'
    #dark_file_name = '/local/data/databank/AS/Mayo_tooth_AS/BG__AFTER_.tif'
    #white_file_name = '/local/data/databank/AS/Mayo_tooth_AS/BG__BEFORE_.tif'
    hdf5_file_name = '/local/data/databank/dataExchange/TXM/TXM_APS26IDMiller1.h5'
    sample_name = 'Teeth'

    projections_start = 0
    projections_end = 361
    white_start = 0
    white_end = 0
    white_step = 1
    dark_start = 0
    dark_end = 0
    dark_step = 1

    verbose = True

    if verbose: print "Input projection base name: ", file_name
    #if verbose: print "Input white base name: ", white_file_name
    #if verbose: print "Input dark base name: ", dark_file_name
    if verbose: print "Output data exchange file name: ", hdf5_file_name

    mydata = Convert()
    # Create minimal hdf5 file
    mydata.series_of_images(file_name,
                     hdf5_file_name,
                     projections_start,
                     projections_end,
                     #white_file_name = white_file_name,
                     white_start = white_start,
                     white_end = white_end,
                     white_step = white_step,
                     #dark_file_name = dark_file_name,
                     #dark_start = dark_start,
                     #dark_end = dark_end,
                     #dark_step = dark_step,
                     #sample_name = sample_name,
                     projections_digits = 4,
                     #white_digits = 2,
                     #dark_digits = 2,
                     projections_zeros = True,
                     verbose = False
                     )
    if verbose: print "Done reading data ... "
     
    # Add extra metadata if available

    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a') 

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry( DataExchangeEntry.instrument(name={'value': 'Australian Synchrotron Facility'}) )

    # Create HDF5 subgroup
    # /measurement/instrument/source
    f.add_entry( DataExchangeEntry.source(name={'value': 'Australian Synchrotron FacilityI'},
                                        date_time={'value': "2013-10-19T22:22:13+0100"},
                                        beamline={'value': "Tomography"},
                                        )
    )

    # /measurement/experimenter
    f.add_entry( DataExchangeEntry.experimenter(name={'value':"Sherry Mayo"},
                                                role={'value':"Project PI"},
                    )
        )

    f.close()
    if verbose: print "Done creating data exchange file: ", hdf5_file_name
def write_example(filename):

    # --- prepare data ---

    # Generate fake raw data
    rawdata = np.ones(180 * 256 * 256, np.uint16).reshape(180, 256, 256)
    rawdata_white = np.ones(2 * 256 * 256, np.uint16).reshape(2, 256, 256)
    rawdata_dark = np.zeros(10 * 256 * 256, np.uint16).reshape(10, 256, 256)

    # Generate fake normalized data
    normalizeddata = np.ones(180 * 256 * 256, \
                             np.float64).reshape(180, 256, 256)

    # Generate fake reconstructed data
    reconstructeddata = np.ones(256 * 256 * 256, \
                                np.float64).reshape(256, 256, 256)
     
    # x, y and z ranges
    x = np.arange(128)
    y = np.arange(128)
    z = np.arange(180);
    
    # Fabricated theta values
    theta = (z / float(180)) * 180.0
    theta_white = (0.0, 180.0)
    theta_dark = (0.0, 0.0, 0.0, 0.0, 0.0, 180.0, 180.0, 180.0, 180.0, 180.0)

    # Fabricated data_shift_x and data_shift_y value
    data_shift_x = np.random.randint(-100, 100, size=180) 
    data_shift_y = np.random.randint(-100, 100, size=180) 

    # --- create file ---

    print filename
    
    # Open DataExchange file
    f = DataExchangeFile(filename, mode='w') 
        
    
    # Create core HDF5 dataset in exchange group for 180 deep stack
    # of x,y images /exchange/data
    f.add_entry( DataExchangeEntry.data(data={'value': rawdata, 'units':'counts', 'description': 'transmission', 'axes':'theta:y:x',
                                            'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} })
    )
    f.add_entry( DataExchangeEntry.data(title={'value': 'tomography_raw_projections'}))
    f.add_entry( DataExchangeEntry.data(data_dark={'value':rawdata_dark, 'units':'counts', 'axes':'theta_dark:y:x',
                                            'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} })
    )
    f.add_entry( DataExchangeEntry.data(data_white={'value': rawdata_white, 'units':'counts', 'axes':'theta_white:y:x',
                                            'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} })
    )
    f.add_entry( DataExchangeEntry.data(theta={'value': theta, 'units':'degrees'}))
    f.add_entry( DataExchangeEntry.data(theta_dark={'value': theta_dark, 'units':'degrees'}))
    f.add_entry( DataExchangeEntry.data(theta_white={'value': theta_white, 'units':'degrees'}))
    f.add_entry( DataExchangeEntry.data(data_shift_x={'value': data_shift_x}))
    f.add_entry( DataExchangeEntry.data(data_shift_y={'value': data_shift_y}))
                  
    # Exchange HDF5 group
    # /exchange_2
    # this will be the out_put of the normalization process
    f.add_entry( DataExchangeEntry.data(root='exchange_2', title={'value': 'tomography normalized projections'}) )
    f.add_entry( DataExchangeEntry.data(root='exchange_2', data={'value': normalizeddata, 'units':'counts', 'axes':'theta:y:x',
                                            'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} })
    )
    f.add_entry( DataExchangeEntry.data(root='exchange_2', theta={'value': theta, 'units':'degrees'}))

    # Exchange HDF5 group
    # /exchange_3
    # this will be the out_put of the reconstruction process
    f.add_entry( DataExchangeEntry.data(root='exchange_3', title={'value': 'tomography reconstructions'}) )
    f.add_entry( DataExchangeEntry.data(root='exchange_3', data={'value': reconstructeddata, 'units':'density', 'axes':'z:y:x',
                                            'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} })
    )

    # Create HDF5 group measurement
    # /measuremen
    f.add_entry( DataExchangeEntry.instrument(name={'value': 'APS 2-BM'}) )

    # Create HDF5 subgroup
    # /measurement/instrument/source
    f.add_entry( DataExchangeEntry.source(name={'value': 'APS'}, 
                                        date_time={'value': "2012-07-31T21:15:23+0600"},
                                        beamline={'value': "2-BM"}, 
                                        current={'value': 101.199, 'units': 'mA', 'dataset_opts':  {'dtype': 'd'}},
                                        energy={'value': 7.0, 'units':'GeV', 'dataset_opts':  {'dtype': 'd'}},
                                        mode={'value':'TOPUP'}
                                        )
    )
    # Create HDF5 subgroup
    # /measurement/instrument/attenuator           
    f.add_entry( DataExchangeEntry.attenuator(thickness={'value': 1e-3, 'units': 'm', 'dataset_opts':  {'dtype': 'd'}},
                                            type={'value': 'Al'}
                                            )
        )

    # Create HDF5 subgroup
    # /measurement/instrument/monochromator
    f.add_entry( DataExchangeEntry.monochromator(type={'value': 'Multilayer'},
                                                energy={'value': 19.26, 'units': 'keV', 'dataset_opts':  {'dtype': 'd'}},
                                                energy_error={'value': 1e-3, 'units': 'keV', 'dataset_opts':  {'dtype': 'd'}},
                                                mono_stripe={'value': 'Ru/C'},
                                                )
        )                                                                                                                                                                                                                                                                                                                                                                                                         

    # Create HDF5 subgroup
    # /measurement/instrument/detector
    f.add_entry( DataExchangeEntry.detector(manufacturer={'value':'CooKe Corporation'},
                                            model={'value': 'pco dimax'},
                                            serial_number={'value': '1234XW2'},
                                            bit_depth={'value': 12, 'dataset_opts':  {'dtype': 'd'}},
                                            x_pixel_size={'value': 6.7e-6, 'dataset_opts':  {'dtype': 'f'}},
                                            y_pixel_size={'value': 6.7e-6, 'dataset_opts':  {'dtype': 'f'}},
                                            x_dimensions={'value': 2048, 'dataset_opts':  {'dtype': 'i'}},
                                            y_dimensions={'value': 2048, 'dataset_opts':  {'dtype': 'i'}},
                                            x_binning={'value': 1, 'dataset_opts':  {'dtype': 'i'}},
                                            y_binning={'value': 1, 'dataset_opts':  {'dtype': 'i'}},
                                            operating_temperature={'value': 270, 'units':'K', 'dataset_opts':  {'dtype': 'f'}},
                                            exposure_time={'value': 170, 'units':'ms', 'dataset_opts':  {'dtype': 'd'}},
                                            frame_rate={'value': 3, 'dataset_opts':  {'dtype': 'i'}},
                                            output_data={'value':'/exchange'}
                                            )
        )

    f.add_entry( DataExchangeEntry.roi(name={'value':'Center Third'},
                                        x1={'value':256, 'dataset_opts':  {'dtype': 'i'}},
                                        x2={'value':1792, 'dataset_opts':  {'dtype': 'i'}},
                                        y1={'value':256, 'dataset_opts':  {'dtype': 'i'}},
                                        y2={'value':1792, 'dataset_opts':  {'dtype': 'i'}},
                                        )
        )

    f.add_entry(DataExchangeEntry.objective(manufacturer={'value':'Zeiss'},
                                            model={'value':'Plan-NEOFLUAR 1004-072'},
                                            magnification={'value':20, 'dataset_opts':  {'dtype': 'd'}},
                                            numerical_aperture={'value':0.5, 'dataset_opts':  {'dtype': 'd'}},
                                        )
        )

    f.add_entry(DataExchangeEntry.scintillator(manufacturer={'value':'Crytur'},
                                                serial_number={'value':'12'},
                                                name={'value':'YAG polished'},
                                                type={'value':'YAG on YAG'},
                                                scintillating_thickness={'value':5e-6, 'dataset_opts':  {'dtype': 'd'}},
                                                substrate_thickness={'value':1e-4, 'dataset_opts':  {'dtype': 'd'}},
            )
        )


    # Create HDF5 subgroup 
    # /measurement/sample
    f.add_entry( DataExchangeEntry.sample( name={'value':'Hornby_b'},
                                            description={'value':'test sample'},
                                            preparation_date={'value':'2011-07-31T21:15:23+0600'},
                                            chemical_formula={'value':'unknown'},
                                            mass={'value':0.25, 'units':'g', 'dataset_opts':  {'dtype': 'd'}},
                                            enviroment={'value':'air'},
                                            temperature={'value':120.0, 'units':'Celsius', 'dataset_opts':  {'dtype': 'd'}},
                                            temperature_set={'value':130.0, 'units':'Celsius', 'dataset_opts':  {'dtype': 'd'}},
            )
        )

    # Create HDF5 subgroup 
    # /measurement/sample/geometry/translation
    f.add_entry( DataExchangeEntry.translation(root='/measurement/sample/geometry',
                    distances={'value':[0,0,0],'axes':'z:y:x', 'units':'m', 'dataset_opts':  {'dtype': 'd'}}
                    )
        )
    # Create HDF5 subgroup
    # /measurement/experimenter
    f.add_entry( DataExchangeEntry.experimenter(name={'value':"John Doe"},
                                                role={'value':"Project PI"},
                                                affiliation={'value':"University of California, Berkeley"},
                                                address={'value':"EPS UC Berkeley CA 94720 4767 USA"},
                                                phone={'value':"+1 123 456 0000"},
                                                email={'value':"*****@*****.**"},
                                                facility_user_id={'value':"a123456"},

                    )
        )
    

    # Create HDF5 subgroup
    # /measurement/experiment
    f.add_entry( DataExchangeEntry.experiment(  proposal={'value':"1234"},
                                                activity={'value':"e11218"},
                                                safety={'value':"9876"},
                )
        )

    # --- All done ---
    f.close()
示例#9
0
def main():

    file_name = '/local/data/databank/TXM_26ID/20130731_004_Stripe_Solder_Sample_Tip1_TomoScript_181imgs_p1s_b1.txrm'
    white_file_name = '/local/data/databank/TXM_26ID/20130731_001_Background_Reference_20imgs_p5s_b1.xrm'
    hdf5_file_name = '/local/data/databank/dataExchange/TXM/20130731_004_Stripe_Solder_Sample_Tip1_nx.h5'
    log_file = '/local/data/databank/dataExchange/TXM/20130731_004_Stripe_Solder_Sample_Tip1.log'

    mydata = Convert()
    # Create minimal hdf5 file
    if verbose: print "Reading data ... "
    mydata.stack(file_name,
                 hdf5_file_name=hdf5_file_name,
                 white_file_name=white_file_name,
                 sample_name='Stripe_Solder_Sample_Tip1')

    # Add extra metadata if available / desired

    reader = xradia.xrm()
    array = dstruct
    reader.read_txrm(file_name, array)

    # Read angles
    n_angles = np.shape(array.exchange.angles)
    if verbose: print "Done reading ", n_angles, " angles"
    theta = np.zeros(n_angles)
    theta = array.exchange.angles[:]

    # Save any other available metadata in a log file
    f = open(log_file, 'w')
    f.write('Data creation date: \n')
    f.write(str(array.information.file_creation_datetime))
    f.write('\n')
    f.write('=======================================\n')
    f.write('Sample name: \n')
    f.write(str(array.information.sample.name))
    f.write('\n')
    f.write('=======================================\n')
    f.write('Experimenter name: \n')
    f.write(str(array.information.experimenter.name))
    f.write('\n')
    f.write('=======================================\n')
    f.write('X-ray energy: \n')
    f.write(str(array.exchange.energy))
    f.write(str(array.exchange.energy_units))
    f.write('\n')
    f.write('=======================================\n')
    f.write('Angles: \n')
    f.write(str(array.exchange.angles))
    f.write('\n')
    f.write('=======================================\n')
    f.write('Data axes: \n')
    f.write(str(array.exchange.data_axes))
    f.write('\n')
    f.write('=======================================\n')
    f.write('x distance: \n')
    f.write(str(array.exchange.x))
    f.write('\n')
    f.write('=======================================\n')
    f.write('x units: \n')
    f.write(str(array.exchange.x_units))
    f.write('\n')
    f.write('=======================================\n')
    f.write('y distance: \n')
    f.write(str(array.exchange.y))
    f.write('\n')
    f.write('=======================================\n')
    f.write('y units: \n')
    f.write(str(array.exchange.y_units))
    f.write('\n')
    f.close()

    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a')

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry(DataExchangeEntry.instrument(name={'value': 'APS-CNM 26-ID'}))

    ### Create HDF5 subgroup
    ### /measurement/instrument/source
    f.add_entry(
        DataExchangeEntry.source(
            name={'value': "Advanced Photon Source"},
            date_time={'value': "2013-07-31T19:42:13+0100"},
            beamline={'value': "26-ID"},
        ))

    # Create HDF5 subgroup
    # /measurement/instrument/monochromator
    f.add_entry(
        DataExchangeEntry.monochromator(
            type={'value': 'Unknown'},
            energy={
                'value': float(array.exchange.energy[0]),
                'units': 'keV',
                'dataset_opts': {
                    'dtype': 'd'
                }
            },
            mono_stripe={'value': 'Unknown'},
        ))

    # Create HDF5 subgroup
    # /measurement/experimenter
    f.add_entry(
        DataExchangeEntry.experimenter(
            name={'value': "Robert Winarski"},
            role={'value': "Project PI"},
        ))

    # Create HDF5 subgroup
    # /measurement/sample
    f.add_entry(
        DataExchangeEntry.data(theta={
            'value': theta,
            'units': 'degrees'
        }))

    f.close()
    print "Done creating data exchange file: ", hdf5_file_name
def main():


    # Petra III collects data over 360deg but in this data sets they had problem with the rotary
    # stage stop moving . This happened after 180 deg so picking the first 180 deg are good to reconstruct.
    # The 3 blocks below load only the good 180 deg

    ### ct2: pj: from 0 -> 3600; bf from 0 -> 20; df from 0 -> 20
    ##file_name = '/local/data/databank/PetraIII/ct2/ct2_.tif'
    ##dark_file_name = '/local/data/databank/PetraIII/ct2/df2b_.tif'
    ##white_file_name = '/local/data/databank/PetraIII/ct2/bf2b_.tif'
    ##hdf5_file_name = '/local/data/databank/dataExchange/microCT/PetraIII_ct2_180.h5'
    ##sample_name = 'ct2'
    ##
    ### ct2: Wheat root
    ### Sample measured at room temperature
    ##
    ##projections_start = 0
    ##projections_end = 1801
    ##white_start = 0
    ##white_end = 20
    ##white_step = 1
    ##dark_start = 0
    ##dark_end = 20
    ##dark_step = 1

    ### ct3: pj: from 0 -> 3601; bf from 20 -> 39; df from 0 -> 19
    ##file_name = '/local/data/databank/PetraIII/ct3/ct3_.tif'
    ##dark_file_name = '/local/data/databank/PetraIII/ct3/df_.tif'
    ##white_file_name = '/local/data/databank/PetraIII/ct3/bf_.tif'
    ##hdf5_file_name = '/local/data/databank/dataExchange/microCT/PetraIII_ct3_180.h5'
    ##sample_name = 'ct3'
    ##
    ### ct3: Wheat root
    ### Same sample as ct3 but measured at cryogenic condition
    ##
    ##projections_start = 0
    ##projections_end = 1801
    ##white_start = 20
    ##white_end = 40
    ##white_step = 1
    ##dark_start = 0
    ##dark_end = 20
    ##dark_step = 1

    # ct4: pj: from 0 -> 1199; bf from 1 -> 18; df from 0 -> 19
    file_name = '/local/data/databank/PetraIII/ct4/ct4_.tif'
    dark_file_name = '/local/data/databank/PetraIII/ct4/df_ct4_.tif'
    white_file_name = '/local/data/databank/PetraIII/ct4/bf_ct4_.tif'
    hdf5_file_name = '/local/data/databank/dataExchange/microCT/PetraIII_ct4_180.h5'
    sample_name = 'ct4'

    # ct4: Leaf of rice
    # Fresh sample measured at cryogenic condition

    projections_start = 0
    projections_end = 601
    white_start = 1
    white_end = 19
    white_step = 1
    dark_start = 0
    dark_end = 20
    dark_step = 1

    ##### if testing uncomment
    ##projections_start = 0
    ##projections_end = 5
    ##white_start = 0
    ##white_end = 5
    ##white_step = 1
    ##dark_start = 0
    ##dark_end = 5
    ##dark_step = 1


    verbose = True

    if verbose: print file_name
    if verbose: print hdf5_file_name
    if verbose: print sample_name


    if verbose: print "Dark start, end", dark_start, dark_end
    if verbose: print "White start, end", white_start, white_end
    if verbose: print "Projections start, end", projections_start, projections_end


    mydata = Convert()
    # Create minimal hdf5 file
    mydata.series_of_images(file_name,
                     hdf5_file_name,
                     projections_start,
                     projections_end,
                     # projections_angle_range=360,
                     white_file_name = white_file_name,
                     white_start = white_start,
                     white_end = white_end,
                     white_step = white_step,
                     dark_file_name = dark_file_name,
                     dark_start = dark_start,
                     dark_end = dark_end,
                     dark_step = dark_step,
                     sample_name = sample_name,
                     projections_digits = 5,
                     zeros = True,
                     verbose = False
                     )

     
    # Add extra metadata if available

    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a') 

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry( DataExchangeEntry.instrument(name={'value': 'Petra III'}) )

    # Create HDF5 subgroup
    # /measurement/instrument/source
    f.add_entry( DataExchangeEntry.source(name={'value': 'Petra III'},
                                        date_time={'value': "2011-25-05T19:42:13+0100"},
                                        beamline={'value': "P06"},
                                        )
    )

    # /measurement/experimenter
    f.add_entry( DataExchangeEntry.experimenter(name={'value':"Walter Schroeder"},
                                                role={'value':"Project PI"},
                    )
        )

    f.close()
    if verbose: print "Done converting ", file_name
示例#11
0
def main():

    file_name = '/local/data/databank/TXM_26ID/Miller1/ABR_1SP_.tif'
    #dark_file_name = '/local/data/databank/AS/Mayo_tooth_AS/BG__AFTER_.tif'
    #white_file_name = '/local/data/databank/AS/Mayo_tooth_AS/BG__BEFORE_.tif'
    hdf5_file_name = '/local/data/databank/dataExchange/TXM/TXM_APS26IDMiller1.h5'
    sample_name = 'Teeth'

    projections_start = 0
    projections_end = 361
    white_start = 0
    white_end = 0
    white_step = 1
    dark_start = 0
    dark_end = 0
    dark_step = 1

    verbose = True

    if verbose: print "Input projection base name: ", file_name
    #if verbose: print "Input white base name: ", white_file_name
    #if verbose: print "Input dark base name: ", dark_file_name
    if verbose: print "Output data exchange file name: ", hdf5_file_name

    mydata = Convert()
    # Create minimal hdf5 file
    mydata.series_of_images(
        file_name,
        hdf5_file_name,
        projections_start,
        projections_end,
        #white_file_name = white_file_name,
        white_start=white_start,
        white_end=white_end,
        white_step=white_step,
        #dark_file_name = dark_file_name,
        #dark_start = dark_start,
        #dark_end = dark_end,
        #dark_step = dark_step,
        #sample_name = sample_name,
        projections_digits=4,
        #white_digits = 2,
        #dark_digits = 2,
        projections_zeros=True,
        verbose=False)
    if verbose: print "Done reading data ... "

    # Add extra metadata if available

    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a')

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry(
        DataExchangeEntry.instrument(
            name={'value': 'Australian Synchrotron Facility'}))

    # Create HDF5 subgroup
    # /measurement/instrument/source
    f.add_entry(
        DataExchangeEntry.source(
            name={'value': 'Australian Synchrotron FacilityI'},
            date_time={'value': "2013-10-19T22:22:13+0100"},
            beamline={'value': "Tomography"},
        ))

    # /measurement/experimenter
    f.add_entry(
        DataExchangeEntry.experimenter(
            name={'value': "Sherry Mayo"},
            role={'value': "Project PI"},
        ))

    f.close()
    if verbose: print "Done creating data exchange file: ", hdf5_file_name
    def xtomo_exchange(self,
                       data,
                       data_white=None,
                       data_dark=None,
                       theta=None,
                       data_exchange_type=None,
                       source_name=None,
                       source_mode=None,
                       source_datetime=None,
                       beamline=None,
                       energy=None,
                       current=None,
                       actual_pixel_size=None,
                       experimenter_name=None,
                       experimenter_affiliation=None,
                       experimenter_email=None,
                       instrument_comment=None,
                       sample_name=None,
                       sample_comment=None,
                       acquisition_mode=None,
                       acquisition_comment=None,
                       sample_position_x=None,
                       sample_position_y=None,
                       sample_position_z=None,
                       sample_image_shift_x=None,
                       sample_image_shift_y=None,
                       hdf5_file_name=None,
                       axes='theta:y:x',
                       log='INFO'):
        """ 
        Write 3-D data to a data-exchange file.

        Parameters
                    
        data : ndarray
            3-D X-ray absorption tomography raw data.
            Size of the dimensions should be:
            [projections, slices, pixels].
            
        data_white, data_dark : ndarray, optional
            3-D white-field/dark_field data. Multiple
            projections are stacked together to obtain
            a 3-D matrix. 2nd and 3rd dimensions should
            be the same as data: [shots, slices, pixels].
            
        theta : ndarray, optional
            Data acquisition angles corresponding
            to each projection.

        data_excahnge_type : str, optional
            label defyining the type of data contained in data exchange file
            for raw data tomography data use 'tomography_raw_projections'

        source_name, source_mode, source_datetime : str, optional
            label defining the source name, operation mode and date/time when these values were taken

        beamline : str, optional
            label defining the beamline name
        
        energy, current : float, optional
            X-ray energy and bean current

        actual_pixel_size : float, optional
            pixel size on the sample plane
 
        experimenter_name, experimenter_affiliation, experimenter_email : str, optional
            user name, affiliation and e-mail address

        instrument_comment : str, optional
            instrument comment

        sample_name, sample_comment : str, optional
            sample name and comment
        
        acquisition_mode, acquisition_comment : str, optional
            acquisition mode and comment

        hd5_file_name : str
            Output file.

        Notes
        -----
        If file exists, does nothing
                
        Examples
        
        - Convert tomographic projection series (raw, dark, white)  of tiff in data exchange:
            
            >>> import dataexchange

            >>> file_name = '/local/dataraid/databank/Anka/radios/image_.tif'
            >>> dark_file_name = '/local/dataraid/databank/Anka/darks/image_.tif'
            >>> white_file_name = '/local/dataraid/databank/Anka/flats/image_.tif'

            >>> hdf5_file_name = '/local/dataraid/databank/dataExchange/tmp/Anka.h5'

            >>> projections_start = 0
            >>> projections_end = 3167
            >>> white_start = 0
            >>> white_end = 100
            >>> dark_start = 0
            >>> dark_end = 100

            >>> sample_name = 'Anka'
            >>> 
            >>> # Read raw data
            >>> read = dataexchange.Import()
            >>> data, white, dark, theta = read.xtomo_raw(file_name,
            >>>                                                    projections_start = projections_start,
            >>>                                                    projections_end = projections_end,
            >>>                                                    white_file_name = white_file_name,
            >>>                                                    white_start = white_start,
            >>>                                                    white_end = white_end,
            >>>                                                    dark_file_name = dark_file_name,
            >>>                                                    dark_start = dark_start,
            >>>                                                    dark_end = dark_end,
            >>>                                                    projections_digits = 5,
            >>>                                                    log='INFO'
            >>>                                                    )
            >>>
            >>> # Save data
            >>> write = dataexchange.Export()
            >>> write.xtomo_exchange(data = data,
            >>>                       data_white = white,
            >>>                       data_dark = dark,
            >>>                       theta = theta,
            >>>                       hdf5_file_name = hdf5_file_name,
            >>>                       data_exchange_type = 'tomography_raw_projections',
            >>>                       sample_name = sample_name
            >>>                       )

        """

        if (hdf5_file_name != None):
            if os.path.isfile(hdf5_file_name):
                self.logger.error("Data Exchange file: [%s] already exists",
                                  hdf5_file_name)
            else:
                # Create new folder.
                dirPath = os.path.dirname(hdf5_file_name)
                if not os.path.exists(dirPath):
                    os.makedirs(dirPath)

                # Get the file_name in lower case.
                lFn = hdf5_file_name.lower()

                # Split the string with the delimeter '.'
                end = lFn.split('.')

                # Write the Data Exchange HDF5 file.
                # Open DataExchange file
                f = DataExchangeFile(hdf5_file_name, mode='w')

                self.logger.info("Creating Data Exchange File [%s]",
                                 hdf5_file_name)

                # Create core HDF5 dataset in exchange group for projections_theta_range
                # deep stack of x,y images /exchange/data
                self.logger.info(
                    "Adding projections to Data Exchange File [%s]",
                    hdf5_file_name)
                f.add_entry(
                    DataExchangeEntry.data(
                        data={
                            'value': data,
                            'units': 'counts',
                            'description': 'transmission',
                            'axes': axes
                        }))
                #                f.add_entry( DataExchangeEntry.data(data={'value': data, 'units':'counts', 'description': 'transmission', 'axes':'theta:y:x', 'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} }))
                if (theta != None):
                    f.add_entry(
                        DataExchangeEntry.data(theta={
                            'value': theta,
                            'units': 'degrees'
                        }))
                    self.logger.info("Adding theta to Data Exchange File [%s]",
                                     hdf5_file_name)
                else:
                    self.logger.warning("theta is not defined")
                if (data_dark != None):
                    self.logger.info(
                        "Adding dark fields to  Data Exchange File [%s]",
                        hdf5_file_name)
                    f.add_entry(
                        DataExchangeEntry.data(
                            data_dark={
                                'value': data_dark,
                                'units': 'counts',
                                'axes': 'theta_dark:y:x'
                            }))
#                    f.add_entry( DataExchangeEntry.data(data_dark={'value': data_dark, 'units':'counts', 'axes':'theta_dark:y:x', 'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} }))
                else:
                    self.logger.warning("data dark is not defined")
                if (data_white != None):
                    self.logger.info(
                        "Adding white fields to  Data Exchange File [%s]",
                        hdf5_file_name)
                    f.add_entry(
                        DataExchangeEntry.data(
                            data_white={
                                'value': data_white,
                                'units': 'counts',
                                'axes': 'theta_white:y:x'
                            }))
#                    f.add_entry( DataExchangeEntry.data(data_white={'value': data_white, 'units':'counts', 'axes':'theta_white:y:x', 'dataset_opts':  {'compression': 'gzip', 'compression_opts': 4} }))
                else:
                    self.logger.warning("data white is not defined")
                if (data_exchange_type != None):
                    self.logger.info(
                        "Adding data type to  Data Exchange File [%s]",
                        hdf5_file_name)
                    f.add_entry(
                        DataExchangeEntry.data(
                            title={'value': data_exchange_type}))

                if (source_name != None):
                    f.add_entry(
                        DataExchangeEntry.source(name={'value': source_name}))
                if (source_mode != None):
                    f.add_entry(
                        DataExchangeEntry.source(mode={'value': source_mode}))
                if (source_datetime != None):
                    f.add_entry(
                        DataExchangeEntry.source(
                            datetime={'value': source_datetime}))

                if (beamline != None):
                    f.add_entry(
                        DataExchangeEntry.source(beamline={'value': beamline}))
                if (energy != None):
                    f.add_entry(
                        DataExchangeEntry.monochromator(
                            energy={
                                'value': energy,
                                'units': 'keV',
                                'dataset_opts': {
                                    'dtype': 'd'
                                }
                            }))
                if (current != None):
                    f.add_entry(
                        DataExchangeEntry.source(
                            current={
                                'value': current,
                                'units': 'mA',
                                'dataset_opts': {
                                    'dtype': 'd'
                                }
                            }))

                if (actual_pixel_size != None):
                    f.add_entry(
                        DataExchangeEntry.detector(actual_pixel_size_x={
                            'value': actual_pixel_size,
                            'units': 'microns',
                            'dataset_opts': {
                                'dtype': 'd'
                            }
                        },
                                                   actual_pixel_size_y={
                                                       'value':
                                                       actual_pixel_size,
                                                       'units': 'microns',
                                                       'dataset_opts': {
                                                           'dtype': 'd'
                                                       }
                                                   }))

                if (experimenter_name != None):
                    f.add_entry(
                        DataExchangeEntry.experimenter(
                            name={'value': experimenter_name}))
                if (experimenter_affiliation != None):
                    f.add_entry(
                        DataExchangeEntry.experimenter(
                            affiliation={'value': experimenter_affiliation}))
                if (experimenter_email != None):
                    f.add_entry(
                        DataExchangeEntry.experimenter(
                            email={'value': experimenter_email}))

                if (instrument_comment != None):
                    f.add_entry(
                        DataExchangeEntry.instrument(
                            comment={'value': instrument_comment}))
                if (sample_name == None):
                    sample_name = end[0]
                    f.add_entry(
                        DataExchangeEntry.sample(
                            name={'value': sample_name},
                            description={
                                'value':
                                'Sample name assigned by the HDF5 converter and based on the HDF5 file name'
                            }))
                else:
                    f.add_entry(
                        DataExchangeEntry.sample(name={'value': sample_name}))
                if (sample_comment != None):
                    f.add_entry(
                        DataExchangeEntry.sample(
                            comment={'value': sample_comment}))

                if (acquisition_mode != None):
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            mode={'value': acquisition_mode}))
                if (acquisition_comment != None):
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            comment={'value': acquisition_comment}))

                if (sample_position_x != None):
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            sample_position_x={
                                'value': sample_position_x,
                                'units': 'microns',
                                'dataset_opts': {
                                    'dtype': 'd'
                                }
                            }))
                if (sample_position_y != None):
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            sample_position_y={
                                'value': sample_position_y,
                                'units': 'microns',
                                'dataset_opts': {
                                    'dtype': 'd'
                                }
                            }))
                if (sample_position_z != None):
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            sample_position_z={
                                'value': sample_position_z,
                                'units': 'microns',
                                'dataset_opts': {
                                    'dtype': 'd'
                                }
                            }))

                if (sample_image_shift_x != None):
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            sample_image_shift_x={
                                'value': sample_image_shift_x,
                                'units': 'microns',
                                'dataset_opts': {
                                    'dtype': 'd'
                                }
                            }))
                if (sample_image_shift_y != None):
                    f.add_entry(
                        DataExchangeEntry.acquisition(
                            sample_image_shift_y={
                                'value': sample_image_shift_y,
                                'units': 'microns',
                                'dataset_opts': {
                                    'dtype': 'd'
                                }
                            }))

                f.close()
                self.logger.info("DONE!!!!. Created Data Exchange File [%s]",
                                 hdf5_file_name)

        else:
            self.logger.warning("Nothing to do ...")
示例#13
0
def main():

    file_name = '/local/data/databank/TXM_26ID/20130731_004_Stripe_Solder_Sample_Tip1_TomoScript_181imgs_p1s_b1.txrm'
    white_file_name = '/local/data/databank/TXM_26ID/20130731_001_Background_Reference_20imgs_p5s_b1.xrm'
    hdf5_file_name = '/local/data/databank/dataExchange/TXM/20130731_004_Stripe_Solder_Sample_Tip1_nx.h5'
    log_file = '/local/data/databank/dataExchange/TXM/20130731_004_Stripe_Solder_Sample_Tip1.log'

    mydata = Convert()
    # Create minimal hdf5 file
    if verbose: print "Reading data ... "
    mydata.stack(file_name,
                   hdf5_file_name = hdf5_file_name,
                   white_file_name = white_file_name,
                   sample_name = 'Stripe_Solder_Sample_Tip1'
                   )
    
    # Add extra metadata if available / desired

    reader = xradia.xrm()
    array = dstruct
    reader.read_txrm(file_name,array)

    # Read angles
    n_angles = np.shape(array.exchange.angles)
    if verbose: print "Done reading ", n_angles, " angles"
    theta = np.zeros(n_angles)
    theta = array.exchange.angles[:]

    # Save any other available metadata in a log file
    f = open(log_file,'w')
    f.write('Data creation date: \n')
    f.write(str(array.information.file_creation_datetime))
    f.write('\n')
    f.write('=======================================\n')
    f.write('Sample name: \n')
    f.write(str(array.information.sample.name))
    f.write('\n')
    f.write('=======================================\n')
    f.write('Experimenter name: \n')
    f.write(str(array.information.experimenter.name))
    f.write('\n')
    f.write('=======================================\n')
    f.write('X-ray energy: \n')
    f.write(str(array.exchange.energy))
    f.write(str(array.exchange.energy_units))
    f.write('\n')
    f.write('=======================================\n')
    f.write('Angles: \n')
    f.write(str(array.exchange.angles))
    f.write('\n')
    f.write('=======================================\n')
    f.write('Data axes: \n')
    f.write(str(array.exchange.data_axes))
    f.write('\n')
    f.write('=======================================\n')
    f.write('x distance: \n')
    f.write(str(array.exchange.x))
    f.write('\n')
    f.write('=======================================\n')
    f.write('x units: \n')
    f.write(str(array.exchange.x_units))
    f.write('\n')
    f.write('=======================================\n')
    f.write('y distance: \n')
    f.write(str(array.exchange.y))
    f.write('\n')
    f.write('=======================================\n')
    f.write('y units: \n')
    f.write(str(array.exchange.y_units))
    f.write('\n')
    f.close()


    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a') 

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry( DataExchangeEntry.instrument(name={'value': 'APS-CNM 26-ID'}) )

    ### Create HDF5 subgroup
    ### /measurement/instrument/source
    f.add_entry( DataExchangeEntry.source(name={'value': "Advanced Photon Source"},
                                        date_time={'value': "2013-07-31T19:42:13+0100"},
                                        beamline={'value': "26-ID"},
                                        )
    )

    # Create HDF5 subgroup
    # /measurement/instrument/monochromator
    f.add_entry( DataExchangeEntry.monochromator(type={'value': 'Unknown'},
                                                energy={'value': float(array.exchange.energy[0]), 'units': 'keV', 'dataset_opts': {'dtype': 'd'}},
                                                mono_stripe={'value': 'Unknown'},
                                                )
        )

    # Create HDF5 subgroup
    # /measurement/experimenter
    f.add_entry( DataExchangeEntry.experimenter(name={'value':"Robert Winarski"},
                                                role={'value':"Project PI"},
                    )
        )

    # Create HDF5 subgroup
    # /measurement/sample
    f.add_entry( DataExchangeEntry.data(theta={'value': theta, 'units':'degrees'}))

    f.close()
    print "Done creating data exchange file: ", hdf5_file_name
def main():

    ##file_name = '/local/data/databank/APS_2_BM/Sam18_hornby/raw/Hornby_19keV_10x_.hdf'
    ##log_file = '/local/data/databank/APS_2_BM/Sam18_hornby/raw/Hornby.log'
    ##
    ##hdf5_file_name = '/local/data/databank/dataExchange/microCT/Hornby_APS_2011.h5'

    file_name = '/local/data/databank/APS_2_BM/Sam19_blakely/raw/Blakely_19keV_10x_.hdf'
    log_file = '/local/data/databank/APS_2_BM/Sam19_blakely/raw/Blakely.log'

    hdf5_file_name = '/local/data/databank/dataExchange/microCT/Blakely_APS_2011.h5'

    verbose = True

    if verbose: print file_name
    if verbose: print log_file
    if verbose: print hdf5_file_name



    #Read input SLS data
    file = open(log_file, 'r')
    if verbose: print '###############################'
    for line in file:
        if 'Number of darks' in line:
            NumberOfDarks = re.findall(r'\d+', line)
            if verbose: print 'Number of Darks', NumberOfDarks[0]
        if 'Number of flats' in line:
            NumberOfFlats = re.findall(r'\d+', line)
            if verbose: print 'Number of Flats', NumberOfFlats[0]
        if 'Number of projections' in line:
            NumberOfProjections = re.findall(r'\d+', line)
            if verbose: print 'Number of Projections', NumberOfProjections[0]
        if 'Number of inter-flats' in line:
            NumberOfInterFlats = re.findall(r'\d+', line)
            if verbose: print 'Number of inter-flats', NumberOfInterFlats[0]
        if 'Inner scan flag' in line:
            InnerScanFlag = re.findall(r'\d+', line)
            if verbose: print 'Inner scan flag', InnerScanFlag[0]
        if 'Flat frequency' in line:
            FlatFrequency = re.findall(r'\d+', line)
            if verbose: print 'Flat frequency', FlatFrequency[0]
        if 'Rot Y min' in line:
            RotYmin = re.findall(r'\d+.\d+', line)
            if verbose: print 'Rot Y min', RotYmin[0]
        if 'Rot Y max' in line:
            RotYmax = re.findall(r'\d+.\d+', line)
            if verbose: print 'Rot Y max', RotYmax[0]
        if 'Angular step' in line:
            AngularStep = re.findall(r'\d+.\d+', line)
            if verbose: print 'Angular step', AngularStep[0]
    if verbose: print '###############################'
    file.close()

    dark_start = 1
    dark_end = int(NumberOfDarks[0]) + 1
    white_start = dark_end
    white_end = white_start + int(NumberOfFlats[0])
    projections_start = white_end
    projections_end = projections_start + int(NumberOfProjections[0])

    if verbose: print dark_start, dark_end
    if verbose: print white_start, white_end
    if verbose: print projections_start, projections_end

    dark_start = 1504
    dark_end = 1505
    white_start = 1
    white_end = 2
    projections_start = 2
    projections_end = 1503

    ### if testing uncomment
    ##dark_start = 1
    ##dark_end = 3
    ##white_start = 10
    ##white_end = 12
    ##projections_start = 20
    ##projections_end = 23

    if verbose: print dark_start, dark_end
    if verbose: print white_start, white_end
    if verbose: print projections_start, projections_end

    mydata = Convert()
    # Create minimal hdf5 file
    mydata.series_of_images(file_name,
                     hdf5_file_name,
                     projections_start,
                     projections_end,
                     white_start = white_start,
                     white_end = white_end,
                     dark_start = dark_start,
                     dark_end = dark_end,
                     projections_digits = 5,
                     data_type = 'hdf4',
                     #verbose = False
                 )

     
    # Add extra metadata if available

    # Open DataExchange file
    f = DataExchangeFile(hdf5_file_name, mode='a') 

    # Create HDF5 subgroup
    # /measurement/instrument
    f.add_entry( DataExchangeEntry.instrument(name={'value': 'APS 2-BM'}) )

    f.add_entry( DataExchangeEntry.source(name={'value': 'Advanced Photon Source'},
                                        date_time={'value': "2012-07-31T21:15:23+0600"},
                                        beamline={'value': "2-BM"},
                                        current={'value': 101.199, 'units': 'mA', 'dataset_opts': {'dtype': 'd'}},
                                        energy={'value': 7.0, 'units':'GeV', 'dataset_opts': {'dtype': 'd'}},
                                        mode={'value':'TOPUP'}
                                        )
    )
    # Create HDF5 subgroup
    # /measurement/instrument/attenuator
    f.add_entry( DataExchangeEntry.attenuator(thickness={'value': 1e-3, 'units': 'm', 'dataset_opts': {'dtype': 'd'}},
                                            type={'value': 'Al'}
                                            )
        )

    # Create HDF5 subgroup
    # Create HDF5 subgroup
    # /measurement/instrument/monochromator
    f.add_entry( DataExchangeEntry.monochromator(type={'value': 'Multilayer'},
                                                energy={'value': 19.26, 'units': 'keV', 'dataset_opts': {'dtype': 'd'}},
                                                energy_error={'value': 1e-3, 'units': 'keV', 'dataset_opts': {'dtype': 'd'}},
                                                mono_stripe={'value': 'Ru/C'},
                                                )
        )


    # Create HDF5 subgroup
    # /measurement/experimenter
    f.add_entry( DataExchangeEntry.experimenter(name={'value':"Jane Waruntorn"},
                                                role={'value':"Project PI"},
                                                affiliation={'value':"University of California"},
                                                facility_user_id={'value':"64924"},

                    )
        )

    f.add_entry(DataExchangeEntry.objective(manufacturer={'value':'Zeiss'},
                                            model={'value':'Plan-NEOFLUAR 1004-072'},
                                            magnification={'value':5, 'dataset_opts': {'dtype': 'd'}},
                                            numerical_aperture={'value':0.5, 'dataset_opts': {'dtype': 'd'}},
                                        )
        )

    f.add_entry(DataExchangeEntry.scintillator(manufacturer={'value':'Crytur'},
                                                serial_number={'value':'12'},
                                                name={'value':'LuAg '},
                                                type={'value':'LuAg'},
                                                scintillating_thickness={'value':50e-6, 'dataset_opts': {'dtype': 'd'}},
                                                substrate_thickness={'value':50e-6, 'dataset_opts': {'dtype': 'd'}},
            )
        )

    # Create HDF5 subgroup
    # /measurement/experiment
    f.add_entry( DataExchangeEntry.experiment( proposal={'value':"GUP-34353"},
                                                activity={'value':"32-IDBC-2013-106491"},
                                                safety={'value':"106491-49734"},
                )
        )


    f.close()
    if verbose: print "Done converting ", file_name
                                    current={'value': 100.96, 'units': 'mA', 'dataset_opts': {'dtype': 'd'}},
                                    )
)

# Create HDF5 subgroup
# /measurement/instrument/monochromator
f.add_entry( DataExchangeEntry.monochromator(type={'value': 'unknow'},
                                            energy={'value': 65, 'units': 'keV', 'dataset_opts': {'dtype': 'd'}},
                                            mono_stripe={'value': 'unknow'},
                                            )
    )

# Create HDF5 subgroup
# /measurement/experimenter
f.add_entry( DataExchangeEntry.experimenter(name={'value':"Peter Kenesei"},
                                            role={'value':"Project PI"},
                                            affiliation={'value':"Advanced Photon Source"},
                                            phone={'value':"+1 630 252-0133"},
                                            email={'value':"*****@*****.**"},

                )
    )


f.close()
if verbose: print "Done converting ", file_name

###if __name__ == "__main__":
###    main()