svm = SVC(kernel=kern) headers = "Size,Time (s),Percent Correct, Percent +, Percent -, Percent + correct, Percent - correct, False + percent, False - percent\n" if multipleTests: file = open(approach + config.pulsar_analysis, 'w') file.write(kern + "\n") file.write(headers) err_cnt = 0 for i in range(3): trialTime = datetime.datetime.now() svm = SVC(kernel=kern) line = "%d," % ((i + 1) * pulsar_step) logging.info('Getting Data............') pulsar_data = data_handler.getPulsarData(1, (i + 1) * pulsar_step) logging.info('Fitting Data............') svm.fit(pulsar_data[0], pulsar_data[1]) logging.info('Testing Data............') test_data_prediction = svm.predict(pulsar_data[2]) res = data_handler.recordResults(1, 0, config.pulsar_results, pulsar_data[3], test_data_prediction, approach, False) trialTime = (datetime.datetime.now() - trialTime).seconds line += "%.2f," % trialTime for item in res:
headers = "Min split,Time (s),Percent Correct, Percent +, Percent -, Percent + correct, Percent - correct, False + percent, False - percent\n" if multipleTests: file = open("./DT/_DT_" + config.pulsar_analysis, 'w') file.write("leaf,split = 100,depth = 9\n") file.write(headers) for i in range(1, 6): trialTime = datetime.datetime.now() clf = DecisionTreeClassifier(max_depth=best_depth, min_samples_leaf=best_leaf, min_samples_split=pow(10, i)) line = "%d," % (pow(10, i)) logging.info('Getting Data............') pulsar_data = data_handler.getPulsarData(1, pulsar_size) logging.info('Fitting Data............') clf.fit(pulsar_data[0], pulsar_data[1]) logging.info('Testing Data............') test_data_prediction = clf.predict(pulsar_data[2]) res = data_handler.recordResults(1, 0, config.pulsar_results, pulsar_data[3], test_data_prediction, "./DT/DT_", False) trialTime = (datetime.datetime.now() - trialTime).seconds line += "%.2f," % trialTime for item in res: