示例#1
0
def get_prediction(ANN, timed_Xtest, timed_ytest):
    #    timed_ypred = mdl.get_pred_timed(ANN, timed_Xtest, data.drop(['label','shock_ind'],axis=1))
    timed_ypred = mdl.get_pred_timed(ANN, timed_Xtest,
                                     data.drop(['label'], axis=1))

    #    raw_proba = mdl.get_prob_timed(ANN, timed_Xtest, data.drop(['label','shock_ind'],axis=1))
    raw_proba = mdl.get_prob_timed(ANN, timed_Xtest,
                                   data.drop(['label'], axis=1))

    #    timed_ypred = dat.append_data_to_timed(timed_ypred, data, ['x', 'y', 'z', 'rho'])
    #    raw_proba = dat.append_data_to_timed(raw_proba, data, ['x', 'y', 'z', 'rho'])

    #variations
    pred_variations = dat.get_var(timed_ypred)
    true_variations = dat.get_var(timed_ytest)

    true_variations = dat.get_category(true_variations)
    pred_variations = dat.get_closest_var_by_cat(
        true_variations, dat.get_category(pred_variations))
    #
    #    true_variations = dat.append_data_to_timed(true_variations, data, ['x', 'y', 'z', 'rho'])
    #    pred_variations = dat.append_data_to_timed(pred_variations, data, ['x', 'y', 'z', 'rho'])

    #crossings reference
    true_crossings = dat.crossings_from_var(true_variations)

    return timed_ypred, raw_proba, true_variations, pred_variations, true_crossings
示例#2
0
def get_corrected_prediction(timed_ypred, raw_proba, true_variations,
                             pred_variations):
    timed_ycorr = dat.get_corrected_pred(pred_variations, timed_ypred,
                                         raw_proba, dt_corr_pred)
    corr_variations = dat.get_var(timed_ycorr)
    corr_variations = dat.corrected_var(
        corr_variations, 15)  #deletes variations faster than 15s
    corr_variations = dat.get_closest_var_by_cat(
        true_variations, dat.get_category(corr_variations))

    #    timed_ycorr = dat.append_data_to_timed(timed_ycorr, data, ['x', 'y', 'z', 'rho'])
    #    corr_variations = dat.append_data_to_timed(corr_variations, data, ['x', 'y', 'z', 'rho'])

    corr_crossings = dat.crossings_from_var(corr_variations)
    return timed_ycorr, corr_variations, corr_crossings
def run_correction():
    global timed_ycorr
    global corr_variations
    global Dt_corr_pred
    global corr_crossings
    
    Dt_corr_pred = int(Dt_var_selection.get())
    timed_ycorr = dat.get_corrected_pred(pred_variations,timed_ypred, raw_proba, Dt_corr_pred)
    corr_variations = dat.get_var(timed_ycorr)
    corr_variations = dat.get_closest_var_by_cat(true_variations, dat.get_category(corr_variations))
    
    timed_ycorr = dat.append_data_to_timed(timed_ycorr, data, ['x', 'y', 'z', 'rho'])  
    corr_variations = dat.append_data_to_timed(corr_variations, data, ['x', 'y', 'z', 'rho'])
    
    corr_crossings = dat.crossings_from_var(corr_variations)
    corr_crossings = dat.get_closest_cross(true_crossings, corr_crossings)
示例#4
0
def pred_from_unseen(model, unseen_data, scale_data, dt_corr, dt_density):
    unseen_data = unseen_data.fillna(scale_data.median())
    
    init_pred = mdl.get_pred_timed(model, unseen_data, scale_data)
    proba = mdl.get_prob_timed(model, unseen_data, scale_data)
    
    init_var = dat.get_var(init_pred)
    init_var = dat.get_category(init_var)
    
    corr_pred = dat.get_corrected_pred(init_var, init_pred, proba, dt_corr)
    vcorr = dat.get_category(dat.get_var(corr_pred))
    vcorr = dat.corrected_var(vcorr, 15) #deletes variations faster than 15s
    corr_crossings = dat.crossings_from_var(vcorr)

    corr_pred = dat.crossings_density(corr_pred, corr_crossings, dt_density)
    final_crossings = dat.final_list(corr_pred)
    return corr_pred, vcorr, final_crossings
    
def run_prediction():
    global timed_ypred
    global raw_proba
    timed_ypred = mdl.get_pred_timed(ANN, timed_Xtest, data.drop('label',axis=1))
    raw_proba = mdl.get_prob_timed(ANN, timed_Xtest, data.drop('label',axis=1))
    
    timed_ypred = dat.append_data_to_timed(timed_ypred, data, ['x', 'y', 'z', 'rho'])  
    raw_proba = dat.append_data_to_timed(raw_proba, data, ['x', 'y', 'z', 'rho']) 
    
    global true_variations
    global pred_variations
    
    pred_variations = dat.get_var(timed_ypred)
    true_variations = dat.get_var(timed_ytest)
    
    true_variations = dat.get_category(true_variations)
    pred_variations = dat.get_closest_var_by_cat(true_variations, dat.get_category(pred_variations))
    
    true_variations = dat.append_data_to_timed(true_variations, data, ['x', 'y', 'z', 'rho'])
    pred_variations = dat.append_data_to_timed(pred_variations, data, ['x', 'y', 'z', 'rho'])
    
    global true_crossings
    true_crossings = dat.crossings_from_var(true_variations)