def getRandomizedSequenceCacheForVerticalPermutations(taxId): global _caches if (taxId, db.Sources.ShuffleCDS_vertical_permutation_1nt) in _caches: cache = _caches[(taxId, db.Sources.ShuffleCDS_vertical_permutation_1nt)] else: # read all native sequences protIds = [] cdss = [] for protId in SpeciesCDSSource(taxId): cds = CDSHelper(taxId, protId) if( cds.length()%3 != 0 ): continue seq = cds.sequence() protIds.append(protId) cdss.append(seq) geneticCode = getSpeciesTranslationTable( taxId ) scpr = SynonymousCodonPermutingRandomization( geneticCode ) randomizer = lambda cdss: scpr.verticalPermutation( cdss ) cache = VerticalRandomizationCache(shuffleType=db.Sources.ShuffleCDS_vertical_permutation_1nt, taxId=taxId, nativeSeqsMap=dict(zip(protIds, cdss)), geneticCode=geneticCode, randomizer=randomizer ) _caches[(taxId, db.Sources.ShuffleCDS_vertical_permutation_1nt)] = cache print(_caches.keys()) return cache
def writeSequenceToTempFile(taxId): print("Fetching sequence for taxid={}".format(taxId)) allRecords = [] allCDSs = [] for protId in SpeciesCDSSource(taxId): cds = CDSHelper(taxId, protId) if (cds.length() % 3 != 0): continue seq = cds.sequence() allCDSs.append(seq) if (len(allCDSs) % 1000 == 999): print(".") record = SeqRecord(Seq(''.join(allCDSs), NucleotideAlphabet), id="allCDSs", description="") allRecords.append(record) fout = NamedTemporaryFile(mode="w", delete=(not debugMode)) SeqIO.write(allRecords, fout.name, "fasta") # write the full sequences into the file return (len(allRecords), fout)
def calculateMissingWindowsForSequence( self, taxId, protId, seqIds, requestedShuffleIds, firstWindow, lastWindowStart, windowStep, reference="begin", shuffleType=db.Sources.ShuffleCDSv2_python): timerForPreFolding.start() logging.warning("Parameters: %d %s %s %s %d %d %s %d" % (taxId, protId, seqIds, requestedShuffleIds, lastWindowStart, windowStep, reference, shuffleType)) f = self._logfile assert (len(seqIds) > 0) assert (len(seqIds) == len(requestedShuffleIds)) optimalSpeciesGrowthTemperature = None if (self._seriesSourceNumber == db.Sources.RNAfoldEnergy_SlidingWindow40_v2_native_temp): (numericalProp, _) = getSpeciesTemperatureInfo(taxId) optimalSpeciesGrowthTemperature = numericalProp[0] if optimalSpeciesGrowthTemperature is None: raise Exception( "No temperature value for taxid={}, can't calculate native-temperature folding profile..." .format(taxId)) else: optimalSpeciesGrowthTemperature = float( optimalSpeciesGrowthTemperature) assert (optimalSpeciesGrowthTemperature >= -30.0 and optimalSpeciesGrowthTemperature <= 150.0) if (reference != "begin" and reference != "end"): timerForPreFolding.stop() e = "Specificed profile reference '%s' is not supported! (" % reference logging.error(e) raise Exception(e) # We will process all listed shuffle-ids for the following protein record cds = CDSHelper(taxId, protId) if (cds.length() < self._windowWidth): e = "Refusing to process item %s because the sequence length (%d nt) is less than the window size (%d nt)\n" % ( itemToProcess, cds.length(), self._windowWidth) f.write(e) logging.error(e) timerForPreFolding.stop() raise Exception(e) # Create a list of the windows we need to calculate for this CDS if reference == "begin": requestedWindowStarts = frozenset( range( 0, min(lastWindowStart + 1, cds.length() - self._windowWidth - 1), windowStep)) if (len(requestedWindowStarts) == 0): e = "No windows exist for calculation taxid=%d, protId=%s, CDS-length=%d, lastWindowStart=%d, windowStep=%d, windowWidth=%d - Skipping...\n" % ( taxId, protId, cds.length(), lastWindowStart, windowStep, self._windowWidth) f.write(e) logging.error(e) timerForPreFolding.stop() raise Exception(e) elif reference == "end": lastPossibleWindowStart = cds.length( ) - self._windowWidth #+ 1 # disregard lastWindowStart when reference=="end" #lastWindowCodonStart = (lastPossibleWindowStart-3)-(lastPossibleWindowStart-3)%3 #lastPossibleWindowStart = seqLength - windowWidth # + 1 # disregard lastWindowStart when reference=="end" requestedWindowStarts = frozenset( filter( lambda x: x >= lastWindowStart, range(lastPossibleWindowStart % windowStep, lastPossibleWindowStart + 1, windowStep))) #requestedWindowStarts = frozenset(range(lastWindowCodonStart % windowStep, lastWindowCodonStart, windowStep)) #pass else: assert (False) # First, read available results (for all shuffle-ids) in JSON format # Array is indexed by shuffle-id, so results not requested will be represented by None (as will requested items that have no results yet). logging.info("DEBUG: requestedShuffleIds (%d items): %s\n" % (len(requestedShuffleIds), requestedShuffleIds)) existingResults = cds.getCalculationResult2(self._seriesSourceNumber, requestedShuffleIds, True, shuffleType=shuffleType) #assert(len(existingResults) >= len(requestedShuffleIds)) # The returned array must be at least as large as the requested ids list assert (len(existingResults) == len(requestedShuffleIds)) logging.info("requestedShuffleIds: %s" % requestedShuffleIds) logging.info("existingResults.keys(): %s" % existingResults.keys()) assert (frozenset(requestedShuffleIds) == frozenset( existingResults.keys())) #existingResults = [None] * (max(requestedShuffleIds)+1) logging.info("DEBUG: existingResults (%d items): %s\n" % (len(existingResults), existingResults)) # Check for which of the requested shuffle-ids there are values missing shuffleIdsToProcess = {} for shuffleId, r in existingResults.items(): if r is None: # There are no existing results for shuffled-id n. If it was requested, it should be calculated now (including all windows) if shuffleId in requestedShuffleIds: shuffleIdsToProcess[shuffleId] = list( requestedWindowStarts) timerForPreFolding.stop() # ------------------------------------------------------------------------------------ continue # TODO - verify this line; should we abort this sequence by throwing???? # ------------------------------------------------------------------------------------ logging.info("/// shuffleId r = %d %s" % (shuffleId, r)) logging.info("r[MFE-profile] %s" % r["MFE-profile"]) # Check the existing results for this shuffle alreadyProcessedWindowStarts = frozenset([ i for i, x in enumerate(r["MFE-profile"]) if x is not None ]) # Get the indices (=window starts) of all non-None values missingWindows = requestedWindowStarts - alreadyProcessedWindowStarts # Are there any requested windows that are not already computed? if (missingWindows): shuffleIdsToProcess[shuffleId] = missingWindows if (not shuffleIdsToProcess): e = "All requested shuffle-ids in (taxId: %d, protId: %s, seqs: %s) seem to have already been processed. Skipping...\n" % ( taxId, protId, str(list(zip(seqIds, requestedShuffleIds)))) logging.warning(e) timerForPreFolding.stop() return logging.info("DEBUG: shuffleIdsToProcess (%d items): %s\n" % (len(shuffleIdsToProcess), shuffleIdsToProcess)) logging.info("DEBUG: Before (%d items): %s\n" % (len(existingResults), existingResults)) # Initialize new results records for shuffleId in shuffleIdsToProcess.keys(): if existingResults[shuffleId] is None: logging.info(seqIds) logging.info(requestedShuffleIds) logging.info(shuffleId) thisSeqId = seqIds[requestedShuffleIds.index(shuffleId)] existingResults[shuffleId] = { "id": "%s/%s/%d/%d" % (taxId, protId, thisSeqId, shuffleId), "seq-crc": None, "MFE-profile": [], "MeanMFE": None, "v": 2, "shuffle-type": shuffleType } logging.info("DEBUG: existingResults (%d items): %s\n" % (len(existingResults), existingResults)) timerForPreFolding.stop() # Load the sequences of all shuffle-ids we need to work on # TODO - combine loading of multiple sequences into one DB operation for shuffleId, record in existingResults.items(): if record is None: logging.info( "DEBUG: skipping empty results record for shuffleId={}". format(shuffleId)) continue timerForPreFolding.start() seq = None annotatedSeqId = None # Get the sequence for this entry if (shuffleId < 0): seq = cds.sequence() annotatedSeqId = cds.seqId() else: seq = cds.getShuffledSeq(shuffleId, shuffleType) annotatedSeqId = cds.getShuffledSeqId(shuffleId, shuffleType) if (seq is None or (not seq is None and len(seq) == 0)): seq2 = cds.getShuffledSeq2(annotatedSeqId) seq3 = cds._fetchSequence(annotatedSeqId) seq4 = cds._cache.get("%d:seq" % annotatedSeqId) if not seq4 is None: del cds._cache["%d:seq" % annotatedSeqId] seq5 = cds.getShuffledSeq2(annotatedSeqId) e = "Got empty sequence for shuffleId=%d, seqId=%d, taxId=%d, protId=%s, numShuffled=%d, ids[%d:%d]=%s, len(seq2)=%d, len(seq3)=%d, len(seq4)=%d, len(seq5)=%d" % ( shuffleId, annotatedSeqId, taxId, protId, len(cds.shuffledSeqIds()), shuffleId - 2, shuffleId + 2, cds.shuffledSeqIds()[shuffleId - 2:shuffleId + 2], len(seq2) if not seq2 is None else -1, len(seq3) if not seq3 is None else -1, len(seq4) if not seq4 is None else -1, len(seq5) if not seq5 is None else -1) logging.error(e) timerForPreFolding.stop() raise Exception(e) # # Disabled - calculation needn't include the native sequence... # #if( annotatedSeqId not in seqIds ): # e = "Error: SeqId specified in queue item %s does not match annotated seq-id %d\n" % (itemToProcess, annotatedSeqId) # f.write(e) # f.write("Current shuffle-id: %d\n" % shuffleId) # f.write("Ids in existing results:\n") # for shuffleId, record in enumerate(existingResults): # f.write(" %d) %s\n" % (shuffleId, record['id'])) # f.write("Debug info:\n") # f.write("\n".join(cds.getDebugInfo())) # f.write("\n") # f.write("Skipping...\n") # print("Skipping...") # raise Exception(e) expectedSeqLength = cds.length() if (not expectedSeqLength is None): if (expectedSeqLength != len(seq)): e = "Warning: taxid=%d, protid=%s, seqid=%d - unexpected length %d (expected: %d)\n" % ( taxId, protId, annotatedSeqId, len(seq), expectedSeqLength) f.write(e) logging.error(e) timerForPreFolding.stop() raise Exception(e) if (len(seq) < self._windowWidth): # Sequence is shorter than required window; skip e = "Warning: skipping sequence because it is shorter than the requested window...\n" f.write(e) logging.error(e) timerForPreFolding.stop() raise Exception(e) logging.info( "DEBUG: Processing item taxId=%d, protId=%s, shuffle=%d (length=%d, %d windows)...\n" % (taxId, protId, shuffleId, len(seq), len(requestedWindowStarts))) # TODO - Remove any old value stored in this key? # Skip this for now # This will be made redundant by completing the "updating" implementation # #if( cds.isCalculationDone( seriesSourceNumber, shuffleId )): # # Sufficient data seems to exist. Skip... # f.write("Item %s appears to be already completed, skipping..." % itemToProcess) # continue logging.info(seq[:50]) #f.write("\n") MFEprofile = record["MFE-profile"] #f.write("Profile: %s\n" % MFEprofile) # Make sure the profile array contains enough entries for all new windows (and possibly, if windows are non-contiguous, entries between them that we are not going to compute right now) if (len(MFEprofile) < max(requestedWindowStarts)): entriesToAdd = max(requestedWindowStarts) - len(MFEprofile) + 1 MFEprofile.extend([None] * entriesToAdd) assert (len(MFEprofile) >= max(requestedWindowStarts)) stats = RunningStats() stats.extend([x for x in MFEprofile if x is not None]) timerForPreFolding.stop() timerForFolding.start() for start in requestedWindowStarts: fragment = seq[start:(start + self._windowWidth)] assert (len(fragment) == self._windowWidth) if self._seriesSourceNumber == db.Sources.RNAfoldEnergy_SlidingWindow40_v2: # Calculate the RNA folding energy. This is the computation-heavy part. #strct, energy = RNA.fold(fragment) energy = RNAfold_direct(fragment) assert (energy <= 0.0) elif self._seriesSourceNumber == db.Sources.RNAfoldEnergy_SlidingWindow40_v2_native_temp: # Calculate the RNA folding energy. This is the computation-heavy part. #strct, energy = RNA.fold(fragment) energy = RNAfold_direct(fragment, explicitCalculationTemperature= optimalSpeciesGrowthTemperature) assert (energy <= 0.0) elif self._seriesSourceNumber == db.Sources.TEST_StepFunction_BeginReferenced: if shuffleId < 0: energy = 0 else: energy = start % 50 - 20 elif self._seriesSourceNumber == db.Sources.TEST_StepFunction_EndReferenced: if shuffleId < 0: energy = 0 else: energy = (expectedSeqLength - self._windowWidth - start) % 50 - 20 else: logging.error( "Received unknown seriesSourceNumber {}".format( self._seriesSourceNumber)) assert (False) # Store the calculation result #print("%d:%s --> %f" % (taxId, protId, energy)) stats.push(energy) MFEprofile[start] = energy print( "/////////////////// shuffleId={} (len={}) //////////////////////////" .format(shuffleId, expectedSeqLength)) prettyPrintProfile(MFEprofile) timerForFolding.stop() timerForPostFolding.start() # Format crc = calcCrc(seq) #result = """{"id":"%s","seq-crc":%d,"MFE-profile":[%s],"MeanMFE":%.6g,v:2}""" % (itemToProcess, crc, ",".join(map(lambda x: "%.3g" % x, MFEprofile)), stats.mean()) record["seq-crc"] = crc record["MFE-profile"] = [ round4(x) for x in MFEprofile ] # Round items down to save space (these are not exact numbers anyway) record["MeanMFE"] = stats.mean() result = json.dumps(record) f.write(result) f.write("\n") if (not self._debugDoneWriteResults): cds.saveCalculationResult2(self._seriesSourceNumber, result, annotatedSeqId, False) timerForPostFolding.stop() timerForPostFolding.start() if (not self._debugDoneWriteResults): cds.commitChanges() timerForPostFolding.stop()
statsShuffles = RunningStats() recordsCount = 0 warningsCount = 0 rl = RateLimit(30) total = countSpeciesCDS(taxId) for protId in SpeciesCDSSource(taxId): cds = CDSHelper(taxId, protId) recordsCount += 1 statsLength.push(cds.length()) if (len(cds.sequence()) != cds.length()): print( "WARNING: incorrect sequence length detected for record (taxid=%d, protId=%s); real-length=%d, recorded-length=%d." % (taxId, protId, len(cds.sequence()), cds.length())) warningsCount += 1 recomputedCrc = calcCrc(cds.sequence()) annotatedCrc = cds.crc() assert (recomputedCrc == annotatedCrc) print(cds.sequence()[:15]) seq1trans = Seq(cds.sequence(), generic_dna).translate() crc1 = calcCrc(seq1trans) shuffles = cds.shuffledSeqIds() unique = len(frozenset(shuffles))
def testCDSand3UTRRandomizationIncludingNextCDS( taxId: int = 511145, geneticCode: int = 11, constantOverlaps: bool = False) -> int: from data_helpers import SpeciesCDSSource from genome_model import getGenomeModelFromCache rand = CDSand3UTRRandomizationIncludingNextCDS( SynonymousCodonPermutingRandomization(geneticCode=geneticCode), NucleotidePermutationRandomization(), taxId, constantOverlaps=constantOverlaps) #for protId in SpeciesCDSSource(taxId): countOK = 0 countNotOK = 0 countNotOK2 = 0 countSkipped = 0 for protId in getGenomeModelFromCache(taxId).allCDSSource(): try: cds = CDSHelper(taxId, protId) seq = cds.sequence() #if str(seq).find("n") != -1: # countSkipped += 1 # continue except Exception as e: countNotOK += 1 continue for i in range(20): try: ret = rand.randomize(seq, protId) except Exception as e: print( "Caught exception during call to randomize(), protId={}!". format(protId)) print(e) countNotOK += 1 countNotOK2 += 1 continue if ret[0] < 1e5: print(protId) if not (len(ret[2]) == len(seq)): print(ret) rand.randomize(seq, protId) assert (len(ret[2]) == len(seq)) countOK += 1 #print("{} -> {}".format( protId, ret )) print("OK: {}, NotOK: {}, Skipped: {}, Total: {}".format( countOK, countNotOK, countSkipped, countOK + countNotOK + countSkipped)) print("randomize exception: {}".format(countNotOK2)) return 0
#fnormpval.write("%s,%s\n" % (protId, ','.join(map(str, normpval)))) #fshapiro.write("%s,%s\n" % (protId, ','.join(map(str, shapiro)))) #fshapiropval.write("%s,%s\n" % (protId, ','.join(map(str, shapiropval)))) #fkurtosis.write("%s,%s\n" % (protId, ','.join(map(str, kurtosis)))) #frefgamma.write("%s,%s\n" % (protId, ','.join(map(str, refgamma)))) # Perform Wilcoxon signed-rank test #print("DF: ", df.shape) # (20,151) #print("s: ", s.shape) # (20,) #print("u: ", df.iloc[1,:].shape) # (151,) #print("mean(u): ", df.mean(axis=0).shape) #print(np.array(profile).shape) #(151,) # Update the GC profile cdsSequence = cds.sequence() gcContent = calcGCcontent(cdsSequence) #print(gcContent) if( len(gcContent) ): for i in range(profileSpec.numProfileWindows()): # Limit to 150; TODO - treat this generically? GCProfile[i].push( gcContent[i] ) medianGCContent.append( np.median( gcContent ) ) del cds # Method 1 -- Wilcoxon, native vs. mean(shuffled), window step=1nt, per gene meanOfShufflesProfileForW = df.mean(axis=0) nativeProfileForW = np.array(profile) assert(meanOfShufflesProfileForW.shape == nativeProfileForW.shape)
for taxId in species: proteinsDone = 0 #nativeColumns = [[] for x in range(maxCodons)] #shuffledColumns = [[[] for x in range(maxCodons)] for y in range(maxShuffles)] allNativeSeqs = {} allShuffledSeqs = {} for protId in SpeciesCDSSource(taxId): cds = CDSHelper(taxId, protId) warnings.update(("total-cds", )) allIds = cds.shuffledSeqIds(shuffleType=shuffleType)[:maxShuffles] nativeSeq = cds.sequence() if (len(nativeSeq) % 3 != 0): warnings.update(("has-broken-codons", )) continue nativeCodons = Counter(splitCodons(nativeSeq)) hasMismatchedCodons = False allNativeSeqs[protId] = nativeSeq hashesForShuffles = set() #for i, c in enumerate(splitCodons(nativeSeq)[:maxCodons]): # nativeColumns[i].append(c) shuffledSeqs = []