eval('b' + str(session_list[2])), eval('b' + str(session_list[3])))) y_T_tr = np.ones(T_tr.shape[0]) y_nT_tr = np.zeros(nT_tr.shape[0]) X_train = np.concatenate((T_tr, nT_tr), axis=0) y_train = np.concatenate((y_T_tr, y_nT_tr), axis=0) # creating test data T_te = eval('a' + str(sess)) nT_te = eval('b' + str(sess)) y_T_te = np.ones(T_te.shape[0]) y_nT_te = np.zeros(nT_te.shape[0]) X_test = np.concatenate((T_te, nT_te), axis=0) y_test = np.concatenate((y_T_te, y_nT_te), axis=0) # Shuffle and reshape the data to fit in model X_train, y_train = data_import(X_train, y_train) X_test, y_test = data_import(X_test, y_test) X_train = X_train.astype('float32') y_train = y_train.astype('int32') X_test = X_test.astype('float32') y_test = y_test.astype('int32') # Now since we have uploaded the data, let's create directories to store the results dir2 = '/home/guest/PycharmProjects/sharaj_works/NSRE/rsvp_gen_results/subject_wise/' # dir2 is the main output directory to store results # Run tag will dynamically create the sub-directories to store results Run_tag = 'D_C_subject_' + str(sub) + '_te_session_' + str(sess) print(Run_tag) # output_dir & output_dir1 will be created for each subject and test session results
import numpy as np #loadmat from scipy.io import loadmat, savemat t_feed = 10 #feed time t_frame = 20 #frame time sample_rate = 16000 fs = sample_rate / 1000 #sample_rate of each ms L_value = np.int(fs * t_frame) NFFT = 512 nfilt = 22 audio_path = "D:\\LAB\\workspace\\lab\\patRecDat\\forStudents\\timit\\test" #audio_path = "/Users/Mata/Documents/2017/学习/ws2017:18/PUL/forStudents/timit/test" dataset = data_import(audio_path, 0) #samples is a dictionary of 172 persons feature_all_set = {} print("feature engineering start") process_bar = ShowProcess(len(dataset.keys())) for name in dataset.keys(): process_bar.show_process() #print("make the feature of "+ name) single_data = dataset.get(name, 'no such file name') # samples of one person features_set = [] for samples in single_data: if name in ['yuxin', 'qianqian', 'shanqi']: #custom voice has dimension error samples = samples[:, 0] else:
#loadmat from scipy.io import loadmat, savemat t_feed = 10 #feed time t_frame = 20 #frame time sample_rate = 16000 fs = sample_rate / 1000 #sample_rate of each ms L_value = np.int(fs * t_frame) NFFT = 512 nfilt = 22 audio_path = "D:\\LAB\\workspace\\lab\\patRecDat\\forStudents\\timit\\test" #audio_path = "/Users/Mata/Documents/2017/学习/ws2017:18/PUL/forStudents/timit/test" dataset = data_import( audio_path, 0) # 0 for registered(known) people, 1 for unregistered(unknown)people #samples is a dictionary of 170 persons feature_all_set = {} print("feature engineering start") process_bar = ShowProcess(len(dataset.keys())) for name in dataset.keys(): process_bar.show_process() #print("make the feature of "+ name) single_data = dataset.get(name, 'no such file name') # samples of one person features_set = [] for samples in single_data: if name in ['yuxin', 'qianqian',