def runWithoutWndchrm(self): print "Loading the classifier" classifier = data_io.load_model() imageCollections = data_io.get_valid_df() featureGetter = FeatureGetter() print "Getting the features" fileName = data_io.get_savez_name_test() if not self.load: #Last features calculated from candidates (namesObservations, coordinates, valid) = Utils.calculateFeatures(fileName, featureGetter, imageCollections) else: (namesObservations, coordinates, valid) = Utils.loadFeatures(fileName) print "Making predictions" #valid = normalize(valid, axis=0) #askdfhashdf predictions = classifier.predict(valid) predictions = predictions.reshape(len(predictions), 1) print "Writing predictions to file" data_io.write_submission(namesObservations, coordinates, predictions) data_io.write_submission_nice(namesObservations, coordinates, predictions) print "Calculating final results" return Predictor.finalResults(namesObservations, predictions, coordinates)
def main(): print("Reading in the training data") data = data_io.get_train_df() print("Extracting features") feature_extractor = Vectorizer(MAX_FEATURES) category_vectorizer = DictVectorizer() #category_title = pd.get_dummies(train['Title']) #print (category_vectorizer.shape, X.shape) X = form_input(data, feature_extractor, category_vectorizer) #location = pd.get_dummies(train['LocationNormalized']) #X = hstack((X, location)) #contract_time = pd.get_dummies(train['ContractTime']) #X = hstack((X, contract_time)) #print(X) y = data["SalaryNormalized"] print("Training model") linreg.train(X, y) print("Making predictions") predictions = linreg.predict(X) mae_train = metrics.MAE(predictions, data["SalaryNormalized"]) print('MAE train=%s', mae_train) print("Validating...") data = data_io.get_valid_df() X = form_input(data, feature_extractor, category_vectorizer, train=False) predictions = linreg.predict(X) data_io.write_submission(predictions) '''
def main(): print("Loading the model") model = data_io.load_model() print("Making predictions") valid = data_io.get_valid_df() predictions = model * np.ones(len(valid)) print("Writing predictions to file") data_io.write_submission(predictions)
def main(): print("Loading the classifier") classifier = data_io.load_model() print("Making predictions") valid = data_io.get_valid_df() predictions = classifier.predict(valid) predictions = predictions.reshape(len(predictions), 1) print("Writing predictions to file") data_io.write_submission(predictions)
def main(): print("Loading the classifier") classifier = data_io.load_model() print("Making predictions") valid = data_io.get_valid_df() predictions = classifier.predict(valid) predictions = np.rint(predictions) # Round predictions to nearest integer. print("Writing predictions to file") data_io.write_submission(predictions)
def main(): valid = data_io.get_valid_df() P={} for key in valid: print("Loading the classifier for %s" %key) classifier = data_io.load_model(key) print("Making predictions") P[key] = classifier.predict(valid[key]) P[key] = P[key].reshape(len(P[key]), 1) print("Writing predictions to file") data_io.write_submission(P)
def run(self): print "Preparing the environment" self.prepareEnvironment() print "Loading the classifier" classifier = data_io.load_model() imageCollections = data_io.get_valid_df() featureGetter = FeatureGetter() wndchrmWorker = WndchrmWorkerPredict() print "Getting the features" if not self.loadWndchrm: #Last wndchrm set of features fileName = data_io.get_savez_name_test() if not self.load: #Last features calculated from candidates (namesObservations, coordinates, _) = Utils.calculateFeatures(fileName, featureGetter, imageCollections) else: (namesObservations, coordinates, _) = Utils.loadFeatures(fileName) print "Saving images" imageSaver = ImageSaver(coordinates, namesObservations, imageCollections, featureGetter.patchSize) imageSaver.saveImages() print "Executing wndchrm algorithm" valid = wndchrmWorker.executeWndchrm(namesObservations) else: (valid, namesObservations) = wndchrmWorker.loadWndchrmFeatures() print "Making predictions" predictions = classifier.predict(valid) predictions = predictions.reshape(len(predictions), 1) print "Writing predictions to file" data_io.write_submission(namesObservations, coordinates, predictions) data_io.write_submission_nice(namesObservations, coordinates, predictions) print "Calculating final results" return Predictor.finalResults(namesObservations, predictions, coordinates)