def do_convert(args, logdir1, logdir2): # Load graph model = Net2() df = Net2DataFlow(hp.convert.data_path, hp.convert.batch_size) ckpt1 = tf.train.latest_checkpoint(logdir1) ckpt2 = '{}/{}'.format(logdir2, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2) session_inits = [] if ckpt2: session_inits.append(SaverRestore(ckpt2)) if ckpt1: session_inits.append(SaverRestore(ckpt1, ignore=['global_step'])) pred_conf = PredictConfig( model=model, input_names=get_eval_input_names(), output_names=get_eval_output_names(), session_init=ChainInit(session_inits)) predictor = OfflinePredictor(pred_conf) audio, y_audio, ppgs = convert(predictor, df) # Write the result tf.summary.audio('A', y_audio, hp.default.sr, max_outputs=hp.convert.batch_size) tf.summary.audio('B', audio, hp.default.sr, max_outputs=hp.convert.batch_size) # Visualize PPGs heatmap = np.expand_dims(ppgs, 3) # channel=1 tf.summary.image('PPG', heatmap, max_outputs=ppgs.shape[0]) writer = tf.summary.FileWriter(logdir2) with tf.Session() as sess: summ = sess.run(tf.summary.merge_all()) writer.add_summary(summ) writer.close()
def eval(logdir1, logdir2): # Load graph model = Net2() # dataflow df = Net2DataFlow(hp.test2.data_path, hp.test2.batch_size) ckpt1 = tf.train.latest_checkpoint(logdir1) ckpt2 = tf.train.latest_checkpoint(logdir2) session_inits = [] if ckpt2: session_inits.append(SaverRestore(ckpt2)) if ckpt1: session_inits.append(SaverRestore(ckpt1, ignore=['global_step'])) pred_conf = PredictConfig(model=model, input_names=get_eval_input_names(), output_names=get_eval_output_names(), session_init=ChainInit(session_inits)) predictor = OfflinePredictor(pred_conf) # x_mfccs, y_spec, _ = next(df().get_data()) summ_loss, = predictor(next(df().get_data())) writer = tf.summary.FileWriter(logdir2) writer.add_summary(summ_loss) writer.close()
def do_convert(logdir1, logdir2, input_path, output_path): # Load graph model = Net2() model.actual_duration = librosa.core.get_duration(filename=input_path, sr=hp.default.sr) # TODO isolate out logdirs, uhh and how to pre-dl from s3? assert len(input_path) > 0, "must be non-empty input path" df = Net2DataFlow(data_path=input_path, batch_size=1) ckpt1 = tf.train.latest_checkpoint(logdir1) ckpt2 = tf.train.latest_checkpoint(logdir2) session_inits = [] session_inits.append(SaverRestore(ckpt2)) session_inits.append(SaverRestore(ckpt1, ignore=['global_step'])) pred_conf = PredictConfig(model=model, input_names=get_eval_input_names(), output_names=get_eval_output_names(), session_init=ChainInit(session_inits)) predictor = OfflinePredictor(pred_conf) audio, y_audio, ppgs = convert(predictor, df) write_wav(audio[0], hp.default.sr, output_path)
def train(args, logdir1, logdir2): # model model = Net2() preprocessing(data_path, logdir2) # dataflow df = Net2DataFlow(data_path, hp.train2.batch_size) # set logger for event and model saver logger.set_logger_dir(logdir2) # session_conf = tf.ConfigProto( # gpu_options=tf.GPUOptions( # allow_growth=True, # per_process_gpu_memory_fraction=0.6, # ), # ) dataset_size = len(glob.glob(data_path + '/wav/*.wav')) print("\t\data_path : ", data_path) print("\t\tDataset Size : ", dataset_size) print("\t\tBatch Size : ", hp.train2.batch_size) print("\t\tSteps per epoch : ", (dataset_size // hp.train2.batch_size)) from time import sleep sleep(10) session_inits = [] ckpt2 = '{}/{}'.format( logdir2, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2) if ckpt2: session_inits.append(SaverRestore(ckpt2)) ckpt1 = tf.train.latest_checkpoint(logdir1) if ckpt1: session_inits.append(SaverRestore(ckpt1, ignore=['global_step'])) train_conf = AutoResumeTrainConfig( model=model, data=QueueInput(df(n_prefetch=1000, n_thread=8)), callbacks=[ # TODO save on prefix net2 ModelSaver(checkpoint_dir=logdir2), # ConvertCallback(logdir2, hp.train2.test_per_epoch), ], max_epoch=hp.train2.num_epochs, steps_per_epoch=dataset_size // hp.train2.batch_size, session_init=ChainInit(session_inits)) if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu train_conf.nr_tower = len(args.gpu.split(',')) gpu_list = args.gpu.split(',') gpu_list = list(map(int, gpu_list)) #trainer = SimpleTrainer() trainer = SyncMultiGPUTrainerReplicated(gpu_list) #trainer = AsyncMultiGPUTrainer(gpu_list, False) launch_train_with_config(train_conf, trainer=trainer)
def train(args, logdir1, logdir2): # model model = Net2() # dataflow df = Net2DataFlow(hp.train2.data_path, hp.train2.batch_size) # set logger for event and model saver logger.set_logger_dir(logdir2) session_conf = tf.ConfigProto( # log_device_placement=True, allow_soft_placement=True, gpu_options=tf.GPUOptions( # allow_growth=True, per_process_gpu_memory_fraction=0.6, ), ) session_inits = [] ckpt2 = '{}/{}'.format(logdir2, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2) if ckpt2: session_inits.append(SaverRestore(ckpt2)) ckpt1 = tf.train.latest_checkpoint(logdir1) if ckpt1: session_inits.append(SaverRestore(ckpt1, ignore=['global_step'])) train_conf = TrainConfig( model=model, data=QueueInput(df(n_prefetch=1000, n_thread=4)), callbacks=[ # TODO save on prefix net2 ModelSaver(checkpoint_dir=logdir2), # ConvertCallback(logdir2, hp.train2.test_per_epoch), ], max_epoch=hp.train2.num_epochs, steps_per_epoch=hp.train2.steps_per_epoch, session_init=ChainInit(session_inits), session_config=session_conf ) if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu train_conf.nr_tower = len(args.gpu.split(',')) #trainer = SyncMultiGPUTrainerParameterServer(hp.train2.num_gpu) trainer = SimpleTrainer() launch_train_with_config(train_conf, trainer=trainer)
def do_convert(args, logdir1, logdir2, input_dir): # Load graph model = Net2() # input_dir = hp.convert.data_base_dir_original + hp.convert.data_path df = Net2DataFlow(input_dir, hp.convert.batch_size) ckpt1 = tf.train.latest_checkpoint(logdir1) ckpt2 = '{}/{}'.format( logdir2, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2) session_inits = [] if ckpt2: session_inits.append(SaverRestore(ckpt2)) if ckpt1: session_inits.append(SaverRestore(ckpt1, ignore=['global_step'])) pred_conf = PredictConfig(model=model, input_names=get_eval_input_names(), output_names=get_eval_output_names(), session_init=ChainInit(session_inits)) predictor = OfflinePredictor(pred_conf) # loop over all the audio files for wav_file in df.wav_files: # check if file is present audio out_path = wav_file.replace(hp.convert.data_base_dir_original, hp.convert.data_base_dir_convert) # change file extension from wv1/wv2 to wav out_path = out_path[:-2] + 'av' if os.path.isfile(out_path): # file is already present, move on to the next one. print("skipping " + wav_file) continue print("converting " + wav_file) # convert audio audio_len, feats = df.get_features(wav_file) audio_full = [] for feat in feats: input_arr = ([feat[0]], [feat[1]], [feat[2]]) audio, ppgs = convert(predictor, input_arr) audio_full.append( (audio[0] * hp.convert.amplitude_multiplier).astype(np.int16)) scipy.io.wavfile.write(out_path, hp.default.sr, np.concatenate(audio_full)[:audio_len])
def train(args, logdir2): # model model = Net2() # dataflow df = Net2DataFlow(hp.train2.mel_path, hp.train2.ppgs_path, hp.train2.batch_size) session_inits = [] ckpt2 = '{}/{}'.format( logdir2, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2) if ckpt2: session_inits.append(SaverRestore(ckpt2)) ''' ckpt1 = tf.train.latest_checkpoint(logdir1) if ckpt1: session_inits.append(SaverRestore(ckpt1, ignore=['global_step'])) ''' train_conf = TrainConfig( model=model, data=QueueInput(df(n_prefetch=1000, n_thread=4)), callbacks=[ # TODO save on prefix net2 ModelSaver(checkpoint_dir=logdir2), # ConvertCallback(logdir2, hp.train2.test_per_epoch), ], max_epoch=hp.train2.num_epochs, steps_per_epoch=hp.train2.steps_per_epoch, session_init=ChainInit(session_inits)) if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu train_conf.nr_tower = len(args.gpu.split(',')) trainer = SyncMultiGPUTrainerReplicated(hp.train2.num_gpu) print("strated trainer") launch_train_with_config(train_conf, trainer=trainer)