示例#1
0
def partition_higgs(batch_size, file_name, validation_ratio):
    parse_start = time.time()
    f = open(file_name).readlines()
    dataset = DenseDatasetWithLines(f, 30)
    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    random_seed = 42
    np.random.seed(random_seed)
    np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    test_loader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              sampler=valid_sampler)

    print("preprocess data cost {} s".format(time.time() - preprocess_start))
    return train_loader, test_loader
示例#2
0
def run(args):
    device = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu')
    torch.manual_seed(1234)
    read_start = time.time()
    avg_error = np.iinfo(np.int16).max
    logging.info(f"{args.rank}-th worker starts.")

    file_name = "{}/{}_{}".format(args.root, args.rank, args.world_size)
    train_file = open(file_name, 'r').readlines()

    train_set = DenseDatasetWithLines(train_file, args.features).ins_np
    dt = train_set.dtype
    centroid_shape = (args.num_clusters, train_set.shape[1])
    logging.info(f"Loading dataset costs {time.time() - read_start}s")
    logging.info(f"centorid shape: {centroid_shape}")

    # initialize centroids
    init_cent_start = time.time()
    if args.rank == 0:
        centroids = torch.tensor(train_set[0:args.num_clusters])
    else:
        centroids = torch.empty(args.num_clusters, args.features)

    if dist_is_initialized():
        dist.broadcast(centroids, 0)
    logging.info(f"Receiving initial centroids costs {time.time() - init_cent_start}s")

    training_start = time.time()
    for epoch in range(args.epochs):
        if avg_error >= args.threshold:
            start_compute = time.time()
            model = Kmeans(train_set, centroids, avg_error, centroid_type='tensor')
            model.find_nearest_cluster()
            end_compute = time.time()
            #logging.info(f"{args.rank}-th worker computing centroids takes {end_compute - start_compute}s")
            sync_start = time.time()
            if dist_is_initialized():
                centroids, avg_error = broadcast_average(args, model.get_centroids("dense_tensor"), torch.tensor(model.error))
            logging.info(f"{args.rank}-th worker finished {epoch} epoch. "
                         f"Computing takes {end_compute - start_compute}s."
                         f"Communicating takes {time.time() - sync_start}s. "
                         #f"Centroids: {model.get_centroids('dense_tensor')}. " 
                         f"Loss: {model.error}")
        else:
            logging.info(f"{args.rank}-th worker finished training. Error = {avg_error}, centroids = {centroids}")
            logging.info(f"Whole process time : {time.time() - training_start}")
            return
示例#3
0
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket']
    key = event['name']
    num_features = event['num_features']
    num_classes = event['num_classes']
    elasti_location = event['elasticache']
    endpoint = memcached_init(elasti_location)
    print('bucket = {}'.format(bucket))
    print('key = {}'.format(key))

    key_splits = key.split("_")
    worker_index = int(key_splits[0])
    num_worker = event['num_files']
    batch_size = 100000
    batch_size = int(np.ceil(batch_size / num_worker))

    torch.manual_seed(random_seed)

    # read file(dataset) from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))
    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    preprocess_start = time.time()
    print("libsvm operation cost {}s".format(parse_start - preprocess_start))

    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    print("dataset size = {}".format(dataset_size))
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s".format(time.time() - preprocess_start))

    model = LogisticRegression(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    train_loss = []
    test_loss = []
    test_acc = []
    total_time = 0
    # Training the Model
    epoch_start = time.time()
    for epoch in range(num_epochs):
        tmp_train = 0
        for batch_index, (items, labels) in enumerate(train_loader):
            #batch_start = time.time()
            print("------worker {} epoch {} batch {}------".format(
                worker_index, epoch, batch_index))
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            w = model.linear.weight.data.numpy()
            b = model.linear.bias.data.numpy()
            file_postfix = "{}_{}".format(batch_index, epoch)
            #asynchronization / shuffle starts from that every worker writes their gradients of this batch and epoch
            #upload individual gradient
            if batch_index == 0 and epoch == 0:
                hset_object(endpoint, model_bucket, w_prefix, w.tobytes())
                hset_object(endpoint, model_bucket, b_prefix, b.tobytes())
                time.sleep(0.0001)
                #randomly get one from others. (Asynchronized)
                w_new = np.fromstring(hget_object(endpoint, model_bucket,
                                                  w_prefix),
                                      dtype=w.dtype).reshape(w.shape)
                b_new = np.fromstring(hget_object(endpoint, model_bucket,
                                                  b_prefix),
                                      dtype=b.dtype).reshape(b.shape)
            else:
                w_new = np.fromstring(hget_object(endpoint, model_bucket,
                                                  w_prefix),
                                      dtype=w.dtype).reshape(w.shape)
                b_new = np.fromstring(hget_object(endpoint, model_bucket,
                                                  b_prefix),
                                      dtype=b.dtype).reshape(b.shape)
                hset_object(endpoint, model_bucket, w_prefix, w.tobytes())
                hset_object(endpoint, model_bucket, b_prefix, b.tobytes())
            model.linear.weight.data = torch.from_numpy(w_new)
            model.linear.bias.data = torch.from_numpy(b_new)

            #report train loss and test loss for every mini batch
            if (batch_index + 1) % 1 == 0:
                print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' %
                      (epoch + 1, num_epochs, batch_index + 1,
                       len(train_indices) / batch_size, loss.data))
            tmp_train += loss.item()
        total_time += time.time() - epoch_start
        train_loss.append(tmp_train)

        tmp_test, tmp_acc = test(model, validation_loader, criterion)
        test_loss.append(tmp_test)
        test_acc.append(tmp_acc)
        epoch_start = time.time()

    print("total time = {}".format(total_time))
    end_time = time.time()
    print("elapsed time = {} s".format(end_time - start_time))
    loss_record = [test_loss, test_acc, train_loss, total_time]
    put_object("async-model-loss", "async-loss{}".format(worker_index),
               pickle.dumps(loss_record))
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    num_buckets = event['num_buckets']
    key = event['file']
    tmp_bucket_prefix = event['tmp_bucket_prefix']
    merged_bucket_prefix = event['merged_bucket_prefix']

    print('bucket = {}'.format(bucket))
    print('number of workers = {}'.format(num_workers))
    print('number of buckets = {}'.format(num_buckets))
    print('worker index = {}'.format(worker_index))
    print("file = {}".format(key))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))

    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s".format(time.time() - preprocess_start))

    model = LogisticRegression(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    train_start = time.time()
    for epoch in range(num_epochs):
        epoch_start = time.time()
        for batch_index, (items, labels) in enumerate(train_loader):
            print("------worker {} epoch {} batch {}------".format(
                worker_index, epoch, batch_index))
            batch_start = time.time()
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            loss.backward()

            print("forward and backward cost {} s".format(time.time() -
                                                          batch_start))

            w_grad = model.linear.weight.grad.data.numpy()
            w_grad_shape = w_grad.shape
            b_grad = model.linear.bias.grad.data.numpy()
            b_grad_shape = b_grad.shape

            w_b_grad = np.concatenate((w_grad.flatten(), b_grad.flatten()))
            cal_time = time.time() - batch_start

            sync_start = time.time()
            postfix = "{}_{}".format(epoch, batch_index)
            w_b_grad_merge = \
                reduce_scatter_batch_multi_bucket(w_b_grad, tmp_bucket_prefix, merged_bucket_prefix,
                                                  num_buckets, num_workers, worker_index, postfix)
            w_grad_merge = \
                w_b_grad_merge[:w_grad_shape[0] * w_grad_shape[1]].reshape(w_grad_shape) / float(num_workers)
            b_grad_merge = \
                w_b_grad_merge[w_grad_shape[0] * w_grad_shape[1]:].reshape(b_grad_shape[0]) / float(num_workers)

            model.linear.weight.grad = Variable(torch.from_numpy(w_grad_merge))
            model.linear.bias.grad = Variable(torch.from_numpy(b_grad_merge))
            sync_time = time.time() - sync_start

            optimizer.step()

            print(
                'Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, '
                'batch cost %.4f s: cal cost %.4f s and communication cost %.4f s'
                % (epoch + 1, num_epochs, batch_index + 1,
                   len(train_indices) / batch_size, time.time() - train_start,
                   loss.data, time.time() - epoch_start,
                   time.time() - batch_start, cal_time, sync_time))

        if worker_index == 0:
            for i in range(num_buckets):
                delete_expired_merged("{}_{}".format(merged_bucket_prefix, i),
                                      epoch)

        # Test the Model
        correct = 0
        total = 0
        test_loss = 0
        for items, labels in validation_loader:
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)
            outputs = model(items)
            test_loss += criterion(outputs, labels).data
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()

        print(
            'Time = %.4f, accuracy of the model on the %d test samples: %d %%, loss = %f'
            % (time.time() - train_start, len(val_indices),
               100 * correct / total, test_loss))

    if worker_index == 0:
        for i in range(num_buckets):
            clear_bucket("{}_{}".format(merged_bucket_prefix, i))
            clear_bucket("{}_{}".format(tmp_bucket_prefix, i))

    end_time = time.time()
    print("Elapsed time = {} s".format(end_time - start_time))
示例#5
0
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket']
    key = event['name']
    num_features = event['num_features']
    num_classes = event['num_classes']
    redis_location = event['elasticache']
    endpoint = redis_init(redis_location)
    print('bucket = {}'.format(bucket))
    print('key = {}'.format(key))

    key_splits = key.split("_")
    num_worker = event['num_files']
    worker_index = event['worker_index']

    batch_size = 100000
    batch_size = int(np.ceil(batch_size / num_worker))

    torch.manual_seed(random_seed)

    # read file(dataset) from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))
    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    preprocess_start = time.time()
    print("libsvm operation cost {}s".format(parse_start - preprocess_start))

    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    print("dataset size = {}".format(dataset_size))
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s".format(time.time() - preprocess_start))

    model = LogisticRegression(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    train_loss = []
    test_loss = []
    test_acc = []
    epoch_time = 0
    epoch_start = time.time()
    # Training the Model
    for epoch in range(num_epochs):
        tmp_train = 0
        for batch_index, (items, labels) in enumerate(train_loader):
            print("------worker {} epoch {} batch {}------".format(
                worker_index, epoch, batch_index))
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)
            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            loss.backward()

            w_grad = model.linear.weight.grad.data.numpy()
            b_grad = model.linear.bias.grad.data.numpy()

            #synchronization starts from that every worker writes their gradients of this batch and epoch
            sync_start = time.time()
            hset_object(endpoint, grad_bucket,
                        w_grad_prefix + str(worker_index), w_grad.tobytes())
            hset_object(endpoint, grad_bucket,
                        b_grad_prefix + str(worker_index), b_grad.tobytes())
            tmp_write_local_epoch_time = time.time() - sync_start
            print("write local gradient cost = {}".format(
                tmp_write_local_epoch_time))

            #merge gradients among files
            file_postfix = "{}_{}".format(epoch, batch_index)
            if worker_index == 0:

                w_grad_merge, b_grad_merge = \
                    merge_w_b_grads(endpoint,
                                    grad_bucket, num_worker, w_grad.dtype,
                                    w_grad.shape, b_grad.shape,
                                    w_grad_prefix, b_grad_prefix)
                put_merged_w_b_grads(endpoint, model_bucket, w_grad_merge,
                                     b_grad_merge, file_postfix, w_grad_prefix,
                                     b_grad_prefix)
                hset_object(endpoint, model_bucket, "epoch", epoch)
                hset_object(endpoint, model_bucket, "index", batch_index)
            else:
                w_grad_merge, b_grad_merge = get_merged_w_b_grads(
                    endpoint, model_bucket, file_postfix, w_grad.dtype,
                    w_grad.shape, b_grad.shape, w_grad_prefix, b_grad_prefix)

            model.linear.weight.grad = Variable(torch.from_numpy(w_grad_merge))
            model.linear.bias.grad = Variable(torch.from_numpy(b_grad_merge))
            tmp_sync_time = time.time() - sync_start
            print("synchronization cost {} s".format(tmp_sync_time))

            optimizer.step()

            tmp_train = tmp_train + loss.item()
            train_loss.append(tmp_train / (batch_index + 1))

        epoch_time += time.time() - epoch_start
        # Test the Model
        correct = 0
        total = 0
        tmp_test = 0
        count = 0
        for items, labels in validation_loader:
            items = Variable(items.view(-1, num_features))
            outputs = model(items)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()
            loss = criterion(outputs, labels)
            tmp_test = tmp_test + loss.item()
            count += 1
        print('Accuracy of the model on the %d test samples: %d %%' %
              (len(val_indices), 100 * correct / total))
        test_loss.append(tmp_test / count)
        test_acc.append(100 * correct / total)
        epoch_start = time.time()

    loss_record = [test_loss, test_acc, train_loss, epoch_time]
    put_object("grad-average-loss", "grad-loss{}".format(worker_index),
               bytes(loss_record))
示例#6
0
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    key = event['file']
    tmp_bucket = event['tmp_bucket']
    merged_bucket = event['merged_bucket']
    lam = event['lambda']
    rho = event['rho']

    print('bucket = {}'.format(bucket))
    print("file = {}".format(key))
    print('number of workers = {}'.format(num_workers))
    print('worker index = {}'.format(worker_index))
    print('tmp bucket = {}'.format(tmp_bucket))
    print('merge bucket = {}'.format(merged_bucket))
    print("lambda = {}".format(lam))
    print("rho = {}".format(rho))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))
    # file_path = "../../dataset/agaricus_127d_train.libsvm"
    # file = open(file_path).readlines()

    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)

    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s, dataset size = {}".format(
        time.time() - preprocess_start, dataset_size))

    model = LogisticRegression(num_features, num_classes).double()
    print("size of w = {}".format(model.linear.weight.data.size()))

    z, u = initialize_z_and_u(model.linear.weight.data.size())
    print("size of z = {}".format(z.shape))
    print("size of u = {}".format(u.shape))

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    train_start = time.time()
    stop = False
    for admm_epoch in range(num_admm_epochs):
        print("ADMM Epoch >>> {}".format(admm_epoch))
        for epoch in range(num_epochs):
            epoch_start = time.time()
            epoch_loss = 0
            for batch_index, (items, labels) in enumerate(train_loader):
                #   print("------worker {} epoch {} batch {}------".format(worker_index, epoch, batch_index))
                batch_start = time.time()
                items = Variable(items.view(-1, num_features))
                labels = Variable(labels)

                # Forward + Backward + Optimize
                optimizer.zero_grad()
                outputs = model(items.double())
                classify_loss = criterion(outputs, labels)
                epoch_loss += classify_loss.data
                u_z = torch.from_numpy(u).double() - torch.from_numpy(
                    z).double()
                loss = classify_loss
                for name, param in model.named_parameters():
                    if name.split('.')[-1] == "weight":
                        loss += rho / 2.0 * torch.norm(param + u_z, p=2)
                #loss = classify_loss + rho / 2.0 * torch.norm(torch.sum(model.linear.weight, u_z))
                optimizer.zero_grad()
                loss.backward(retain_graph=True)
                optimizer.step()

            # Test the Model
            test_start = time.time()
            correct = 0
            total = 0
            test_loss = 0
            for items, labels in validation_loader:
                items = Variable(items.view(-1, num_features))
                labels = Variable(labels)
                outputs = model(items.double())
                test_loss += criterion(outputs, labels).data
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum()
            test_time = time.time() - test_start

            print(
                'Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, '
                'batch cost %.4f s: test cost %.4f s, '
                'accuracy of the model on the %d test samples: %d %%, loss = %f'
                % (epoch + 1, num_epochs, batch_index + 1,
                   len(train_indices) / batch_size, time.time() - train_start,
                   epoch_loss.data, time.time() - epoch_start,
                   time.time() - batch_start, test_time, len(val_indices),
                   100 * correct / total, test_loss / total))

        w = model.linear.weight.data.numpy()
        w_shape = w.shape
        b = model.linear.bias.data.numpy()
        b_shape = b.shape
        u_shape = u.shape

        w_and_b = np.concatenate((w.flatten(), b.flatten()))
        u_w_b = np.concatenate((u.flatten(), w_and_b.flatten()))
        cal_time = time.time() - epoch_start
        print("Epoch {} calculation cost = {} s".format(epoch, cal_time))

        sync_start = time.time()
        postfix = "{}_{}".format(admm_epoch, epoch)
        u_w_b_merge = reduce_scatter_batch(u_w_b, tmp_bucket, merged_bucket,
                                           num_workers, worker_index, postfix)
        u_mean = u_w_b_merge[:u_shape[0] *
                             u_shape[1]].reshape(u_shape) / float(num_workers)
        w_mean = u_w_b_merge[u_shape[0] * u_shape[1]:u_shape[0] * u_shape[1] +
                             w_shape[0] *
                             w_shape[1]].reshape(w_shape) / float(num_workers)
        b_mean = u_w_b_merge[u_shape[0] * u_shape[1] +
                             w_shape[0] * w_shape[1]:].reshape(
                                 b_shape[0]) / float(num_workers)
        #model.linear.weight.data = torch.from_numpy(w)
        model.linear.bias.data = torch.from_numpy(b_mean)
        sync_time = time.time() - sync_start
        print("Epoch {} synchronization cost {} s".format(epoch, sync_time))

        if worker_index == 0:
            delete_expired_merged(merged_bucket, epoch)

        #z, u, r, s = update_z_u(w, z, u, rho, num_workers, lam)
        #stop = check_stop(ep_abs, ep_rel, r, s, dataset_size, num_features, w, z, u, rho)
        #print("stop = {}".format(stop))

        #z = num_workers * rho / (2 * lam + num_workers * rho) * (w + u_mean)
        z = update_z(w_mean, u_mean, rho, num_workers, lam)
        #print(z)
        u = u + model.linear.weight.data.numpy() - z
        #print(u)

    # Test the Model
    correct = 0
    total = 0
    test_loss = 0
    for items, labels in validation_loader:
        items = Variable(items.view(-1, num_features))
        labels = Variable(labels)
        outputs = model(items.double())
        test_loss += criterion(outputs, labels).data
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

    print(
        'Epoch: %d, time = %.4f, accuracy of the model on the %d test samples: %d %%, loss = %f'
        % (epoch, time.time() - train_start, len(val_indices),
           100 * correct / total, test_loss / total))

    if worker_index == 0:
        clear_bucket(merged_bucket)
        clear_bucket(tmp_bucket)

    end_time = time.time()
    print("Elapsed time = {} s".format(end_time - start_time))
示例#7
0
def handler(event, context):
    avg_error = np.iinfo(np.int16).max

    num_features = event['num_features']
    num_clusters = event['num_clusters']
    worker_cent_bucket = event["worker_cent_bucket"]
    avg_cent_bucket = event["avg_cent_bucket"]
    num_epochs = event["num_epochs"]
    threshold = event["threshold"]
    dataset_type = event["dataset_type"]
    elastic_location = event["elasticache"]
    elastic_endpoint = memcached_init(elastic_location)
    print(elastic_endpoint)
    #Reading data from S3
    bucket_name = event['bucket_name']
    key = urllib.parse.unquote_plus(event['key'], encoding='utf-8')
    logger.info(
        f"Reading training data from bucket = {bucket_name}, key = {key}")
    key_splits = key.split("_")
    num_worker = int(key_splits[-1])
    worker_index = int(key_splits[0])

    event_start = time.time()
    file = get_object(bucket_name, key).read().decode('utf-8').split("\n")
    s3_end = time.time()
    logger.info(f"Getting object from s3 takes {s3_end - event_start}s")

    if dataset_type == "dense":
        # dataset is stored as numpy array
        dataset = DenseDatasetWithLines(file, num_features).ins_np
        dt = dataset.dtype
        centroid_shape = (num_clusters, dataset.shape[1])
    else:
        # dataset is sparse, stored as sparse tensor
        dataset = SparseDatasetWithLines(file, num_features)
        first_entry = dataset.ins_list[0].to_dense().numpy()
        dt = first_entry.dtype
        centroid_shape = (num_clusters, first_entry.shape[1])
    parse_end = time.time()
    logger.info(f"Parsing dataset takes {parse_end - s3_end}s")
    logger.info(
        f"worker index: {worker_index},Dataset: {dataset_type}, dtype: {dt}. Centroids shape: {centroid_shape}. num_features: {num_features}"
    )

    if worker_index == 0:
        if dataset_type == "dense":
            centroids = dataset[0:num_clusters].reshape(-1)
            hset_object(elastic_endpoint, avg_cent_bucket, "initial",
                        centroids.tobytes())
            centroids = centroids.reshape(centroid_shape)
        else:
            centroids = store_centroid_as_numpy(
                dataset.ins_list[0:num_clusters], num_clusters)
            hset_object(elastic_endpoint, avg_cent_bucket, "initial",
                        centroids.tobytes())
    else:
        cent = hget_object_or_wait(elastic_endpoint, avg_cent_bucket,
                                   "initial", 0.00001)
        centroids = process_centroid(cent, num_clusters, dt)
        #centroids = np.frombuffer(cent,dtype=dt)
        if centroid_shape != centroids.shape:
            logger.error("The shape of centroids does not match.")
        logger.info(
            f"Waiting for initial centroids takes {time.time() - parse_end} s")

    training_start = time.time()
    sync_time = 0
    for epoch in range(num_epochs):
        logger.info(f"{worker_index}-th worker in {epoch}-th epoch")
        epoch_start = time.time()
        if epoch != 0:
            last_epoch = epoch - 1
            cent_with_error = hget_object_or_wait(elastic_endpoint,
                                                  avg_cent_bucket,
                                                  f"avg-{last_epoch}", 0.00001)
            wait_end = time.time()
            if worker_index != 0:
                logger.info(
                    f"Wait for centroid for {epoch}-th epoch. Takes {wait_end - epoch_start}"
                )
                sync_time += wait_end - epoch_start
            avg_error, centroids = process_centroid(cent_with_error,
                                                    num_clusters, dt, True)
        if avg_error >= threshold:
            print("get new centro")
            res = get_new_centroids(dataset, dataset_type, centroids, epoch,
                                    num_features, num_clusters)
            #dt = res.dtype
            sync_start = time.time()
            success = hset_object(elastic_endpoint, worker_cent_bucket,
                                  f"{worker_index}_{epoch}", res.tobytes())

            if worker_index == 0 and success:

                compute_average_centroids(elastic_endpoint, avg_cent_bucket,
                                          worker_cent_bucket, num_worker,
                                          centroid_shape, epoch, dt)
                logger.info(
                    f"Waiting for all workers takes {time.time() - sync_start} s"
                )
                if epoch != 0:
                    sync_time += time.time() - sync_start

        else:
            print("sync time = {}".format(sync_time))
            logger.info(
                f"{worker_index}-th worker finished training. Error = {avg_error}, centroids = {centroids}"
            )
            logger.info(f"Whole process time : {time.time() - training_start}")
            return
        print("sync time = {}".format(sync_time))
        put_object("kmeans-time", "time_{}".format(worker_index),
                   np.asarray(sync_time).tostring())
示例#8
0
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    key = event['file']
    host = event['host']
    port = event['port']

    print('bucket = {}'.format(bucket))
    print('number of workers = {}'.format(num_workers))
    print('worker index = {}'.format(worker_index))
    print("file = {}".format(key))
    print("host = {}".format(host))
    print("port = {}".format(port))

    # Set thrift connection
    # Make socket
    transport = TSocket.TSocket(host, port)
    # Buffering is critical. Raw sockets are very slow
    transport = TTransport.TBufferedTransport(transport)
    # Wrap in a protocol
    protocol = TBinaryProtocol.TBinaryProtocol(transport)
    # Create a client to use the protocol encoder
    t_client = ParameterServer.Client(protocol)
    # Connect!
    transport.open()

    # test thrift connection
    ps_client.ping(t_client)
    print("create and ping thrift server >>> HOST = {}, PORT = {}".format(
        host, port))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))

    # parse dataset
    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, NUM_FEATURES)
    print("parse data cost {} s".format(time.time() - parse_start))

    # preprocess dataset
    preprocess_start = time.time()
    dataset_size = len(dataset)
    indices = list(
        range(dataset_size))  # indices for training and validation splits:
    split = int(np.floor(VALIDATION_RATIO * dataset_size))
    if SHUFFLE_DATASET:
        np.random.seed(RANDOM_SEED)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]
    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)
    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=BATCH_SIZE,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=BATCH_SIZE,
                                                    sampler=valid_sampler)
    print("preprocess data cost {} s".format(time.time() - preprocess_start))

    model = LogisticRegression(NUM_FEATURES, NUM_CLASSES)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE)

    # register model
    model_name = "w.b"
    weight_shape = model.linear.weight.data.numpy().shape
    weight_length = weight_shape[0] * weight_shape[1]
    bias_shape = model.linear.bias.data.numpy().shape
    bias_length = bias_shape[0]
    model_length = weight_length + bias_length
    ps_client.register_model(t_client, worker_index, model_name, model_length,
                             num_workers)
    ps_client.exist_model(t_client, model_name)
    print("register and check model >>> name = {}, length = {}".format(
        model_name, model_length))

    # Training the Model
    train_start = time.time()
    iter_counter = 0
    for epoch in range(NUM_EPOCHS):
        epoch_start = time.time()
        for batch_index, (items, labels) in enumerate(train_loader):
            print("------worker {} epoch {} batch {}------".format(
                worker_index, epoch, batch_index))
            batch_start = time.time()

            # pull latest model
            ps_client.can_pull(t_client, model_name, iter_counter,
                               worker_index)
            latest_model = ps_client.pull_model(t_client, model_name,
                                                iter_counter, worker_index)
            model.linear.weight = Parameter(
                torch.from_numpy(
                    np.asarray(latest_model[:weight_length],
                               dtype=np.double).reshape(weight_shape)))
            model.linear.bias = Parameter(
                torch.from_numpy(
                    np.asarray(latest_model[weight_length:],
                               dtype=np.double).reshape(bias_shape[0])))

            items = Variable(items.view(-1, NUM_FEATURES))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items.double())
            loss = criterion(outputs, labels)
            loss.backward()

            # flatten and concat gradients of weight and bias
            w_b_grad = np.concatenate(
                (model.linear.weight.grad.data.numpy().flatten(),
                 model.linear.bias.grad.data.numpy().flatten()))
            cal_time = time.time() - batch_start

            # push gradient to PS
            sync_start = time.time()
            ps_client.can_push(t_client, model_name, iter_counter,
                               worker_index)
            ps_client.push_grad(t_client, model_name, w_b_grad, LEARNING_RATE,
                                iter_counter, worker_index)
            ps_client.can_pull(t_client, model_name, iter_counter + 1,
                               worker_index)  # sync all workers
            sync_time = time.time() - sync_start

            print(
                'Epoch: [%d/%d], Step: [%d/%d] >>> Time: %.4f, Loss: %.4f, epoch cost %.4f, '
                'batch cost %.4f s: cal cost %.4f s and communication cost %.4f s'
                % (epoch + 1, NUM_EPOCHS, batch_index + 1,
                   len(train_indices) / BATCH_SIZE, time.time() - train_start,
                   loss.data, time.time() - epoch_start,
                   time.time() - batch_start, cal_time, sync_time))
            iter_counter += 1

        # Test the Model
        correct = 0
        total = 0
        test_loss = 0
        for items, labels in validation_loader:
            items = Variable(items.view(-1, NUM_FEATURES))
            labels = Variable(labels)
            outputs = model(items)
            test_loss += criterion(outputs, labels).data
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()

        print(
            'Time = %.4f, accuracy of the model on the %d test samples: %d %%, loss = %f'
            % (time.time() - train_start, len(val_indices),
               100 * correct / total, test_loss))

    end_time = time.time()
    print("Elapsed time = {} s".format(end_time - start_time))
示例#9
0
def handler(event, context):
    start_time = time.time()
    start_time = time.time()
    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    key = event['file']
    tmp_bucket = event['tmp_bucket']
    merged_bucket = event['merged_bucket']

    print('bucket = {}'.format(bucket))
    print('number of workers = {}'.format(num_workers))
    print('worker index = {}'.format(worker_index))
    print("file = {}".format(key))
    print('bucket = {}'.format(bucket))
    print('key = {}'.format(key))
    key_splits = key.split("_")
    worker_index = int(key_splits[0])
    num_worker = int(key_splits[1])
    sync_meta = SyncMeta(worker_index, num_worker)
    print("synchronization meta {}".format(sync_meta.__str__()))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))

    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s, dataset size = {}"
          .format(time.time() - preprocess_start, dataset_size))

    model = LogisticRegression(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    train_start = time.time()
    # Training the Model
    for epoch in range(num_epochs):
        epoch_start = time.time()
        epoch_loss = 0
        for batch_index, (items, labels) in enumerate(train_loader):
            # print("------worker {} epoch {} batch {}------".format(worker_index, epoch, batch_index))
            batch_start = time.time()
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            epoch_loss += loss.data
            loss.backward()
            # print("forward and backward cost {} s".format(time.time()-batch_start))
            optimizer.step()

            # print('Epoch: [%d/%d], Step: [%d/%d], Time: %.4f s, Loss: %.4f, batch cost %.4f s'
            #        % (epoch + 1, num_epochs, batch_index + 1, len(train_indices) / batch_size,
            #           time.time() - train_start, loss.data, time.time() - batch_start))

        w = model.linear.weight.data.numpy()
        w_shape = w.shape
        b = model.linear.bias.data.numpy()
        b_shape = b.shape
        # print("weight before sync shape = {}, values = {}".format(w.shape, w))
        # print("bias before sync shape = {}, values = {}".format(b.shape, b))
        w_and_b = np.concatenate((w.flatten(), b.flatten()))
        cal_time = time.time() - epoch_start
        # print("Epoch {} calculation cost = {} s".format(epoch, cal_time))

        sync_start = time.time()
        postfix = str(epoch)
        w_and_b_merge = reduce_scatter_epoch(w_and_b, tmp_bucket, merged_bucket, num_worker, worker_index, postfix)
        w_merge = w_and_b_merge[:w_shape[0] * w_shape[1]].reshape(w_shape) / float(num_worker)
        b_merge = w_and_b_merge[w_shape[0] * w_shape[1]:].reshape(b_shape[0]) / float(num_worker)
        model.linear.weight.data = torch.from_numpy(w_merge)
        model.linear.bias.data = torch.from_numpy(b_merge)
        # print("weight after sync = {}".format(model.linear.weight.data.numpy()[0][:5]))
        # print("bias after sync = {}".format(model.linear.bias.data.numpy()))
        sync_time = time.time() - sync_start
        # print("Epoch {} synchronization cost {} s".format(epoch, sync_time))

        if worker_index == 0:
            delete_expired_merged(merged_bucket, epoch)

        # Test the Model
        test_start = time.time()
        correct = 0
        total = 0
        test_loss = 0
        for items, labels in validation_loader:
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)
            outputs = model(items)
            test_loss += criterion(outputs, labels).data
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()
        test_time = time.time() - test_start

        print('Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, '
              'batch cost %.4f s: calculation cost = %.4f s, synchronization cost %.4f s, test cost %.4f s, '
              'accuracy of the model on the %d test samples: %d %%, loss = %f'
              % (epoch + 1, num_epochs, batch_index + 1, len(train_indices) / batch_size,
                 time.time() - train_start, epoch_loss.data, time.time() - epoch_start,
                 time.time() - batch_start, cal_time, sync_time, test_time,
                 len(val_indices), 100 * correct / total, test_loss / total))

    if worker_index == 0:
        clear_bucket(tmp_bucket)
        clear_bucket(merged_bucket)

    end_time = time.time()
    print("Elapsed time = {} s".format(end_time - start_time))
示例#10
0
def handler(event, context):
    startTs = time.time()
    bucket = event['Records'][0]['s3']['bucket']['name']
    key = urllib.parse.unquote_plus(event['Records'][0]['s3']['object']['key'], encoding='utf-8')

    print('bucket = {}'.format(bucket))
    print('key = {}'.format(key))

    key_splits = key.split("_")
    worker_index = int(key_splits[0])
    num_worker = int(key_splits[1])
    sync_meta = SyncMeta(worker_index, num_worker)
    print("synchronization meta {}".format(sync_meta.__str__()))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - startTs))

    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s".format(time.time() - preprocess_start))

    model = LogisticRegression(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    for epoch in range(num_epochs):
        for batch_index, (items, labels) in enumerate(train_loader):
            print("------worker {} epoch {} batch {}------".format(worker_index, epoch, batch_index))
            batch_start = time.time()
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            loss.backward()

            print("forward and backward cost {} s".format(time.time()-batch_start))

            w_grad = model.linear.weight.grad.data.numpy()
            b_grad = model.linear.bias.grad.data.numpy()
            #print("dtype of grad = {}".format(w_grad.dtype))
            print("w_grad before merge = {}".format(w_grad[0][0:5]))
            print("b_grad before merge = {}".format(b_grad))

            sync_start = time.time()
            put_object(grad_bucket, w_grad_prefix + str(worker_index), w_grad.tobytes())
            put_object(grad_bucket, b_grad_prefix + str(worker_index), b_grad.tobytes())

            file_postfix = "{}_{}".format(epoch, batch_index)
            if worker_index == 0:
                w_grad_merge, b_grad_merge = \
                    merge_w_b_grads(grad_bucket, num_worker, w_grad.dtype,
                                    w_grad.shape, b_grad.shape,
                                    w_grad_prefix, b_grad_prefix)
                put_merged_w_b_grad(model_bucket, w_grad_merge, b_grad_merge,
                                    file_postfix, w_grad_prefix, b_grad_prefix)
                delete_expired_w_b(model_bucket, epoch, batch_index, w_grad_prefix, b_grad_prefix)
                model.linear.weight.grad = Variable(torch.from_numpy(w_grad_merge))
                model.linear.bias.grad = Variable(torch.from_numpy(b_grad_merge))
            else:
                w_grad_merge, b_grad_merge = get_merged_w_b_grad(model_bucket, file_postfix,
                                                                 w_grad.dtype, w_grad.shape, b_grad.shape,
                                                                 w_grad_prefix, b_grad_prefix)
                model.linear.weight.grad = Variable(torch.from_numpy(w_grad_merge))
                model.linear.bias.grad = Variable(torch.from_numpy(b_grad_merge))

            print("w_grad after merge = {}".format(model.linear.weight.grad.data.numpy()[0][:5]))
            print("b_grad after merge = {}".format(model.linear.bias.grad.data.numpy()))

            print("synchronization cost {} s".format(time.time() - sync_start))

            optimizer.step()

            print("batch cost {} s".format(time.time() - batch_start))

            if (batch_index + 1) % 10 == 0:
                print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f'
                      % (epoch + 1, num_epochs, batch_index + 1, len(train_indices) / batch_size, loss.data))

    if worker_index == 0:
        clear_bucket(model_bucket)
        clear_bucket(grad_bucket)

    # Test the Model
    correct = 0
    total = 0
    for items, labels in validation_loader:
        items = Variable(items.view(-1, num_features))
        # items = Variable(items)
        outputs = model(items)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

    print('Accuracy of the model on the %d test samples: %d %%' % (len(val_indices), 100 * correct / total))

    endTs = time.time()
    print("elapsed time = {} s".format(endTs - startTs))
示例#11
0
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    key = event['file']
    merged_bucket = event['merged_bucket']
    num_epochs = event['num_epochs']
    learning_rate = event['learning_rate']
    batch_size = event['batch_size']
    elasti_location = event['elasticache']
    endpoint = memcached_init(elasti_location)

    print('bucket = {}'.format(bucket))
    print("file = {}".format(key))
    print('merged bucket = {}'.format(merged_bucket))
    print('number of workers = {}'.format(num_workers))
    print('worker index = {}'.format(worker_index))
    print('num epochs = {}'.format(num_epochs))
    print('learning rate = {}'.format(learning_rate))
    print("batch size = {}".format(batch_size))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))

    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s, dataset size = {}".format(
        time.time() - preprocess_start, dataset_size))

    model = SVM(num_features, num_classes)
    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    train_loss = []
    test_loss = []
    test_acc = []
    epoch_time = 0
    # Training the Model
    epoch_start = time.time()
    for epoch in range(num_epochs):
        tmp_train = 0
        for batch_index, (items, labels) in enumerate(train_loader):
            print("------worker {} epoch {} batch {}------".format(
                worker_index, epoch, batch_index))
            batch_start = time.time()
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            if (batch_index + 1) % 1 == 0:
                print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' %
                      (epoch + 1, num_epochs, batch_index + 1,
                       len(train_indices) / batch_size, loss.data))
            tmp_train = tmp_train + loss.item()

        train_loss.append(tmp_train / (batch_index + 1))
        # sync model
        w_model = model.linear.weight.data.numpy()
        b_model = model.linear.bias.data.numpy()
        epoch_time = time.time() - epoch_start + epoch_time
        # synchronization starts from that every worker writes their model after this epoch
        sync_start = time.time()
        hset_object(endpoint, merged_bucket, w_prefix + str(worker_index),
                    w_model.tobytes())
        hset_object(endpoint, merged_bucket, b_prefix + str(worker_index),
                    b_model.tobytes())
        tmp_write_local_epoch_time = time.time() - sync_start
        print("write local model cost = {}".format(tmp_write_local_epoch_time))

        # merge gradients among files
        file_postfix = "{}".format(epoch)
        if worker_index == 0:
            merge_start = time.time()
            w_model_merge, b_model_merge = merge_w_b_grads(
                endpoint, merged_bucket, num_workers, w_model.dtype,
                w_model.shape, b_model.shape, w_prefix, b_prefix)
            put_merged_w_b_grads(endpoint, merged_bucket, w_model_merge,
                                 b_model_merge, file_postfix, w_prefix,
                                 b_prefix)
        else:
            w_model_merge, b_model_merge = get_merged_w_b_grads(
                endpoint, merged_bucket, file_postfix, w_model.dtype,
                w_model.shape, b_model.shape, w_prefix, b_prefix)

        model.linear.weight.data = Variable(torch.from_numpy(w_model_merge))
        model.linear.bias.data = Variable(torch.from_numpy(b_model_merge))

        tmp_sync_time = time.time() - sync_start
        print("synchronization cost {} s".format(tmp_sync_time))

        # Test the Model
        correct = 0
        total = 0
        count = 0
        tmp_test = 0
        for items, labels in validation_loader:
            items = Variable(items.view(-1, num_features))
            outputs = model(items)
            loss = criterion(outputs, labels)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()
            tmp_test = tmp_test + loss.item()
            count = count + 1
        # print('Accuracy of the model on the %d test samples: %d %%' % (len(val_indices), 100 * correct / total))
        test_acc.append(100 * correct / total)
        test_loss.append(tmp_test / count)
        epoch_start = time.time()
    end_time = time.time()

    print("elapsed time = {} s".format(end_time - start_time))
    loss_record = [test_loss, test_acc, train_loss, epoch_time]
    put_object("model-average-loss", "average_loss{}".format(worker_index),
               pickle.dumps(loss_record))
示例#12
0
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket']
    key = event['name']
    num_features = event['num_features']
    num_classes = event['num_classes']
    print('bucket = {}'.format(bucket))
    print('key = {}'.format(key))

    key_splits = key.split("_")
    worker_index = int(key_splits[0])
    num_worker = int(key_splits[1])

    # read file(dataset) from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))
    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    preprocess_start = time.time()
    print("libsvm operation cost {}s".format(parse_start - preprocess_start))

    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    print("dataset size = {}".format(dataset_size))
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s".format(time.time() - preprocess_start))

    model = LogisticRegression(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    for epoch in range(num_epochs):
        for batch_index, (items, labels) in enumerate(train_loader):
            print("------worker {} epoch {} batch {}------".format(
                worker_index, epoch, batch_index))
            batch_start = time.time()
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            loss.backward()
            print("forward and backward cost {} s".format(time.time() -
                                                          batch_start))

            w_grad = model.linear.weight.grad.data.numpy()
            b_grad = model.linear.bias.grad.data.numpy()
            print("w_grad before merge = {}".format(w_grad[0][0:5]))
            print("b_grad before merge = {}".format(b_grad))

            #synchronization starts from that every worker writes their gradients of this batch and epoch
            sync_start = time.time()
            hset_object(endpoint, grad_bucket,
                        w_grad_prefix + str(worker_index), w_grad.tobytes())
            hset_object(endpoint, grad_bucket,
                        b_grad_prefix + str(worker_index), b_grad.tobytes())

            #merge gradients among files
            merge_start = time.time()
            file_postfix = "{}_{}".format(epoch, batch_index)
            if worker_index == 0:
                merge_start = time.time()
                w_grad_merge, b_grad_merge = \
                    merge_w_b_grads(endpoint,
                                    grad_bucket, num_worker, w_grad.dtype,
                                    w_grad.shape, b_grad.shape,
                                    w_grad_prefix, b_grad_prefix)
                print("model average time = {}".format(time.time() -
                                                       merge_start))
                #possible rewrite the file before being accessed. wait until anyone finishes accessing.
                put_merged_w_b_grads(endpoint, model_bucket, w_grad_merge,
                                     b_grad_merge, w_grad_prefix,
                                     b_grad_prefix)
                hset_object(endpoint, model_bucket, "epoch", epoch)
                hset_object(endpoint, model_bucket, "index", batch_index)
                #delete_expired_w_b(endpoint,
                #                   model_bucket, epoch, batch_index, w_grad_prefix, b_grad_prefix)
                model.linear.weight.grad = Variable(
                    torch.from_numpy(w_grad_merge))
                model.linear.bias.grad = Variable(
                    torch.from_numpy(b_grad_merge))
            else:
                # wait for flag to access
                while hget_object(endpoint, model_bucket, "epoch") != None:
                    if int(hget_object(endpoint, model_bucket, "epoch")) == epoch \
                            and int(hget_object(endpoint, model_bucket, "index")) == batch_index:
                        break
                    time.sleep(0.01)
                w_grad_merge, b_grad_merge = get_merged_w_b_grads(
                    endpoint, model_bucket, w_grad.dtype, w_grad.shape,
                    b_grad.shape, w_grad_prefix, b_grad_prefix)
                hcounter(endpoint, model_bucket,
                         "counter")  #flag it if it's accessed.
                print("number of access at this time = {}".format(
                    int(hget_object(endpoint, model_bucket, "counter"))))
                model.linear.weight.grad = Variable(
                    torch.from_numpy(w_grad_merge))
                model.linear.bias.grad = Variable(
                    torch.from_numpy(b_grad_merge))

            print("w_grad after merge = {}".format(
                model.linear.weight.grad.data.numpy()[0][:5]))
            print("b_grad after merge = {}".format(
                model.linear.bias.grad.data.numpy()))

            print("synchronization cost {} s".format(time.time() - sync_start))

            optimizer.step()

            print("batch cost {} s".format(time.time() - batch_start))

            if (batch_index + 1) % 10 == 0:
                print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' %
                      (epoch + 1, num_epochs, batch_index + 1,
                       len(train_indices) / batch_size, loss.data))
    """
    if worker_index == 0:
        while sync_counter(endpoint, bucket, num_workers):
            time.sleep(0.001)
        clear_bucket(endpoint, model_bucket)
        clear_bucket(endpoint, grad_bucket)
    """
    # Test the Model
    correct = 0
    total = 0
    for items, labels in validation_loader:
        items = Variable(items.view(-1, num_features))
        outputs = model(items)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

    print('Accuracy of the model on the %d test samples: %d %%' %
          (len(val_indices), 100 * correct / total))

    end_time = time.time()
    print("elapsed time = {} s".format(end_time - start_time))
示例#13
0
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    key = event['file']
    tmp_bucket = event['tmp_bucket']
    merged_bucket = event['merged_bucket']
    num_epochs = event['num_epochs']
    learning_rate = event['learning_rate']
    batch_size = event['batch_size']

    print('bucket = {}'.format(bucket))
    print("file = {}".format(key))
    print('tmp bucket = {}'.format(tmp_bucket))
    print('merged bucket = {}'.format(merged_bucket))
    print('number of workers = {}'.format(num_workers))
    print('worker index = {}'.format(worker_index))
    print('num epochs = {}'.format(num_epochs))
    print('learning rate = {}'.format(learning_rate))
    print("batch size = {}".format(batch_size))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))

    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s, dataset size = {}".format(
        time.time() - preprocess_start, dataset_size))

    model = SVM(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    train_start = time.time()
    for epoch in range(num_epochs):
        epoch_start = time.time()
        epoch_loss = 0
        for batch_index, (items, labels) in enumerate(train_loader):
            # print("------worker {} epoch {} batch {}------".format(worker_index, epoch, batch_index))
            batch_start = time.time()
            #items = Variable(items.view(-1, num_features))
            #labels = Variable(labels)

            items = items.to(torch.device("cpu"))
            labels = labels.to(torch.device("cpu")).float()

            # Forward + Backward + Optimize
            outputs = model(items)
            print("outputs type = {}".format(outputs.type()))
            print("labels type = {}".format(labels.type()))
            loss = torch.mean(torch.clamp(1 - outputs.t() * labels,
                                          min=0))  # hinge loss
            loss += 0.01 * torch.mean(model.linear.weight**
                                      2) / 2.0  # l2 penalty
            epoch_loss += loss

            optimizer.zero_grad()
            loss.backward()

            optimizer.step()

        # Test the Model
        test_start = time.time()
        correct = 0
        total = 0
        test_loss = 0
        for items, labels in validation_loader:
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)
            outputs = model(items)
            test_loss = torch.mean(
                torch.clamp(1 - outputs.t() * labels.float(),
                            min=0))  # hinge loss
            test_loss += 0.01 * torch.mean(model.linear.weight**
                                           2) / 2.0  # l2 penalty

            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()
        test_time = time.time() - test_start

        print(
            'Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, '
            'batch cost %.4f s: test cost %.4f s, '
            'accuracy of the model on the %d test samples: %d %%, loss = %f' %
            (epoch + 1, num_epochs, batch_index + 1, len(train_indices) /
             batch_size, time.time() - train_start, epoch_loss.data,
             time.time() - epoch_start, time.time() - batch_start, test_time,
             len(val_indices), 100 * correct / total, test_loss / total))

        w = model.linear.weight.data.numpy()
        w_shape = w.shape
        b = model.linear.bias.data.numpy()
        b_shape = b.shape
        w_and_b = np.concatenate((w.flatten(), b.flatten()))
        cal_time = time.time() - epoch_start
        print("Epoch {} calculation cost = {} s".format(epoch, cal_time))

        sync_start = time.time()
        postfix = "{}".format(epoch)
        u_w_b_merge = reduce_epoch(w_and_b, tmp_bucket, merged_bucket,
                                   num_workers, worker_index, postfix)

        w_mean = u_w_b_merge[:w_shape[0] *
                             w_shape[1]].reshape(w_shape) / float(num_workers)
        b_mean = u_w_b_merge[w_shape[0] * w_shape[1]:].reshape(
            b_shape[0]) / float(num_workers)
        model.linear.weight.data = torch.from_numpy(w_mean)
        model.linear.bias.data = torch.from_numpy(b_mean)
        sync_time = time.time() - sync_start
        print("Epoch {} synchronization cost {} s".format(epoch, sync_time))

        if worker_index == 0:
            delete_expired_merged_epoch(merged_bucket, epoch)
        #
        #
        # #file_postfix = "{}_{}".format(epoch, worker_index)
        # if epoch < num_epochs - 1:
        #     if worker_index == 0:
        #         w_merge, b_merge = merge_w_b(model_bucket, num_workers, w.dtype,
        #                                      w.shape, b.shape, tmp_w_prefix, tmp_b_prefix)
        #         put_merged_w_b(model_bucket, w_merge, b_merge,
        #                        str(epoch), w_prefix, b_prefix)
        #         delete_expired_w_b_by_epoch(model_bucket, epoch, tmp_w_prefix, tmp_b_prefix)
        #         model.linear.weight.data = torch.from_numpy(w_merge)
        #         model.linear.bias.data = torch.from_numpy(b_merge)
        #     else:
        #         w_merge, b_merge = get_merged_w_b(model_bucket, str(epoch), w.dtype,
        #                                           w.shape, b.shape, w_prefix, b_prefix)
        #         model.linear.weight.data = torch.from_numpy(w_merge)
        #         model.linear.bias.data = torch.from_numpy(b_merge)

        #print("weight after sync = {}".format(model.linear.weight.data.numpy()[0][:5]))
        #print("bias after sync = {}".format(model.linear.bias.data.numpy()))

        # print("epoch {} synchronization cost {} s".format(epoch, time.time() - sync_start))

    # Test the Model
    correct = 0
    total = 0
    for items, labels in validation_loader:
        items = Variable(items.view(-1, num_features))
        # items = Variable(items)
        outputs = model(items)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

    print('Accuracy of the model on the %d test samples: %d %%' %
          (len(val_indices), 100 * correct / total))

    if worker_index == 0:
        clear_bucket(merged_bucket)
        clear_bucket(tmp_bucket)

    end_time = time.time()
    print("Elapsed time = {} s".format(end_time - start_time))