from data_loader import load_sensor_files from sklearn.decomposition import PCA from numpy import array from random import sample from numpy.linalg import norm num_samples = 100000 data_path = "/home/willist/Documents/dnn/data/" training_set = load_sensor_files(data_path, num_samples=num_samples, shared=False) pca = PCA(n_components=5) pca.fit(training_set) num_test_samples = len(training_set) / 10 test_samples = sample(training_set, num_test_samples) mean_error = 0.0 for sample in test_samples: s_compr = pca.transform(sample) s_decompr = pca.inverse_transform(s_compr) # print sample # print s_compr # print s_decompr mean_error += norm(sample - s_decompr) print mean_error / num_test_samples
from data_loader import load_sensor_files from sklearn.linear_model import LinearRegression import numpy as np data_path = "/home/willist/Documents/dnn/data/labeled/" training_set, training_labels, test_set, test_labels = load_sensor_files(data_path, shared=False) regr = LinearRegression() regr.fit(training_set, training_labels) predicted_labels = regr.predict(test_set) print ("Residual sum of squares: %.5f" % np.mean(np.sum((predicted_labels - test_labels) ** 2, axis=1)))
"Fine Tune Epochs: " + str(fine_tune_epochs) + "\n" + \ "Fine Tune Supervised: " + str(fine_tune_supervised) + "\n" + \ "Hidden Layer Sizes: " + str(hidden_layer_sizes) + "\n" + \ "Corruption Levels: " + str(corruption_levels) + "\n" + \ "Pretraining Learning Rates: " + str(pretraining_learning_rates) + "\n" + \ "Tied Weights: " + str(tied_weights) + "\n" + \ "Sigmoid Compressions: " + str(sigmoid_compressions) + "\n" + \ "Sigmoid Reconstructions: " + str(sigmoid_reconstructions) + "\n" + \ "Supervised Sigmoid Activation: " + str(supervised_sigmoid_activation) + "\n" print_flush(description) training_set, training_labels, test_set, test_labels = load_sensor_files(training_path, testing_path, history_length=history_length, num_training_samples=num_training_samples, num_training_samples_per_file=num_training_samples_per_file, num_test_samples=num_test_samples, num_test_samples_per_file=num_test_samples_per_file, feature_indexes=feature_indexes, label_indexes=label_indexes) # compute number of minibatches for training, validation and testing n_train_batches = training_set.get_value(borrow=True).shape[0] n_train_batches /= batch_size # numpy random generator # start-snippet-3 numpy_rng = random.RandomState(89677) print_flush("... building the model") # construct the stacked denoising autoencoder class