示例#1
0
for itr in range(100):
	print("\nFor the {0:03d}".format(itr))
awa_train_path = config.data_path + 'meta/path_label_list{0:03d}.txt'.format(itr)

# num_file : int 
# count the number of input image files
with open(awa_train_path) as f:
    for num_file, l in enumerate(f):
        pass

"""
example) queue_data('/home/siit/navi/data/sample/meta/path_label_list.txt', 
50, 1, 'val',multi_label=False)
"""
trainX, trainY = data_loader.queue_data(
		awa_train_path, config.n_classes, config.batch_size, 'val', multi_label=False)

feat = []
lab = []
path_feat = {}
for i in range(num_file+1):
	batch_x, batch_y = sess.run([trainX, trainY])
	_, idx = np.nonzero(batch_y)

	feature = sess.run(feat_layer, feed_dict={x: batch_x, y_: batch_y, keep_prob:1.0})
	feat.append(feature[0][0][0])

	lab.append(idx[0])
	path_feat[]
	
	if i%1000 == 0:
示例#2
0
			total_cost += cost_val

			counter += 1

			if np.mod(counter, config.print_freq) == 0:
				print('Step:', '%05dk' % (counter),
					'\tAvg. cost =', '{:.5f}'.format(cost_val),
					'\tAcc: {:.5f}'.format(acc_))
				writer.add_summary(acc, counter)

			# Save the model
			if np.mod(counter, config.save_freq) == 0:
				if config.nsml:
					nsml.save(counter)
				if not os.path.exists(config.checkpoint_path):
					os.mkdir(config.checkpoint_path)
				saver.save(sess, os.path.join(config.checkpoint_path, 
					'vgg19_{0:03d}k'.format(int(counter/1000))))
				print('Model ')
	

# -------------------- Testing -------------------- #


Xbatch, Ybatch, _ = data_loader.queue_data(
	test_data, label_list, im_size)

accuracy_ = sess.run(accuracy, feed_dict = {X: Xbatch, Y: Ybatch})
print('Accuracy:', accuracy_)

示例#3
0
			train_data = [line for line in path_label_list
			if 'train' in line]
			test_data = [line for line in path_label_list
			if 'test' in line]

			num_file = len(train_data)

		# print('Number of input files: \t{}'.format(num_file))
		total_batch = int(num_file / batch_size)
		total_cost = 0
		final_acc = 0

		for i in range(total_batch):
			# Get the batch as [batch_size, 28,28] and [batch_size, n_classes] ndarray
			Xbatch, Ybatch, _ = data_loader.queue_data(
				train_data[i*batch_size:(i+1)*batch_size], label_list,
				im_size)
	
			_, cost_val, acc = sess.run([optimizer, cost, merged], feed_dict={X: Xbatch, Y: Ybatch})
			total_cost += cost_val


	print('Epoch:', '%04d' % (epoch + 1),
		'\tAvg. cost =', '{:.3f}'.format(total_cost / total_batch))

	writer.add_summary(acc, epoch)
	# Save the model
	if epoch % 5 == 0:
		if not os.path.exists(config.checkpoint_path):
			os.mkdir(config.checkpoint_path)
		saver.save(sess, os.path.join(config.checkpoint_path, 
示例#4
0
            test_data = all_data[:1000]

            num_file = len(train_data)

        if num_file == 0:
            break

        # print('Number of input files: \t{}'.format(num_file))
        total_batch = int(num_file / batch_size)
        total_cost = 0
        final_acc = 0

        for i in range(total_batch):
            # Get the batch as [batch_size, 28,28] and [batch_size, n_classes] ndarray
            Xbatch, Ybatch, _ = data_loader.queue_data(
                train_data[i * batch_size:(i + 1) * batch_size], label_list,
                im_size, config.lable_processed)

            _, cost_val, acc = sess.run([optimizer, cost, merged],
                                        feed_dict={
                                            X: Xbatch,
                                            Y: Ybatch
                                        })
            total_cost += cost_val

            if np.mod(i, 10) == 0:
                print('Epoch:', '%02d' % (epoch + 1), '\tAvg. cost =',
                      '{:.3f}'.format(total_cost / total_batch))

    print('Epoch:', '%04d' % (epoch + 1), '\tAvg. cost =',
          '{:.3f}'.format(total_cost / total_batch))