simple_net(important_vars, important_features, 'bpsk\\lstm_simple_net.gv', var_list=var_list, mode_list=mode_list) # BPSK if 'mt' in system: data_path = parentdir + '\\tank_systems\\data\\train\\' mana = mt_data_manager() mana.load_data(data_path) mana.add_noise(20) var_list = mana.cfg.variables mode_list = ['normal'] + mana.cfg.faults inputs, _ = mana.random_h_batch(batch=test_batch, step_num=64, prop=0.2, sample_rate=1.0) # CNN if 'cnn' in network: ann = 'mt_cnn_distill_(8, 16, 32, 64).cnn' ann = parentdir + '\\ann_diagnoser\\mt\\train\\20db\\{}\\'.format( args.index) + ann important_vars = heat_map_feature_input( ann, inputs, figname= 'mt\\importance_heat_map_between_varialbe_feature_of_CNN', isCNN=True) important_features = heat_map_fault_feature( ann, inputs,
two_fault=0) labels = torch.sum(labels * torch.Tensor([1, 2, 3, 4, 5, 6]), 1).long() labels = labels.detach().numpy() if args.model is None: inputs = inputs.detach().numpy() numpy2arff(inputs, labels, args.output, var_list, mode_list) elif 'encoder' in args.model: encoder2arff(inputs, labels, args.model, args.output, mode_list) else: feature2arff(inputs, labels, args.model, args.output, mode_list) if args.system == 'mt': step_len = 64 data_path = parentdir + '\\tank_systems\\data\\{}\\'.format( args.purpose) mana = mt_data_manager() mana.load_data(data_path) mana.add_noise(snr) var_list = mana.cfg.variables[0:11] mode_list = ['normal'] + mana.cfg.faults inputs, labels = mana.random_h_batch(batch=batch, step_num=64, prop=0.2, sample_rate=1.0) if args.model is None: numpy2arff(inputs, labels, args.output, var_list, mode_list) elif 'encoder' in args.model: encoder2arff(inputs, labels, args.model, args.output, mode_list) else: feature2arff(inputs, labels, args.model, args.output, mode_list)