def shift_vis_to_image(vis: Visibility, im: Image, tangent: bool = True, inverse: bool = False) \
        -> Visibility:
    """Shift visibility to the FFT phase centre of the image in place

    :param vis: Visibility data
    :param im: Image model used to determine phase centre
    :param tangent: Is the shift purely on the tangent plane True|False
    :param inverse: Do the inverse operation True|False
    :return: visibility with phase shift applied and phasecentre updated

    """
    assert isinstance(vis, Visibility), "vis is not a Visibility: %r" % vis
    
    nchan, npol, ny, nx = im.data.shape
    
    # Convert the FFT definition of the phase center to world coordinates (1 relative)
    # This is the only place in ARL where the relationship between the image and visibility
    # frames is defined.
    
    image_phasecentre = pixel_to_skycoord(nx // 2 + 1, ny // 2 + 1, im.wcs, origin=1)
    if vis.phasecentre.separation(image_phasecentre).rad > 1e-15:
        if inverse:
            log.debug("shift_vis_from_image: shifting phasecentre from image phase centre %s to visibility phasecentre "
                      "%s" % (image_phasecentre, vis.phasecentre))
        else:
            log.debug("shift_vis_from_image: shifting phasecentre from vis phasecentre %s to image phasecentre %s" %
                      (vis.phasecentre, image_phasecentre))
        vis = phaserotate_visibility(vis, image_phasecentre, tangent=tangent, inverse=inverse)
        vis.phasecentre = im.phasecentre
    
    assert isinstance(vis, Visibility), "after phase_rotation, vis is not a Visibility"
    
    return vis
def create_visibility(config: Configuration,
                      times: numpy.array,
                      frequency: numpy.array,
                      channel_bandwidth,
                      phasecentre: SkyCoord,
                      weight: float,
                      polarisation_frame=PolarisationFrame('stokesI'),
                      integration_time=1.0,
                      zerow=False) -> Visibility:
    """ Create a Visibility from Configuration, hour angles, and direction of source

    Note that we keep track of the integration time for BDA purposes

    :param config: Configuration of antennas
    :param times: hour angles in radians
    :param frequency: frequencies (Hz] [nchan]
    :param weight: weight of a single sample
    :param phasecentre: phasecentre of observation
    :param channel_bandwidth: channel bandwidths: (Hz] [nchan]
    :param integration_time: Integration time ('auto' or value in s)
    :param polarisation_frame: PolarisationFrame('stokesI')
    :return: Visibility
    """
    assert phasecentre is not None, "Must specify phase centre"

    if polarisation_frame is None:
        polarisation_frame = correlate_polarisation(config.receptor_frame)

    nch = len(frequency)
    ants_xyz = config.data['xyz']
    nants = len(config.data['names'])
    nbaselines = int(nants * (nants - 1) / 2)
    ntimes = len(times)
    npol = polarisation_frame.npol
    nrows = nbaselines * ntimes * nch
    nrowsperintegration = nbaselines * nch
    row = 0
    rvis = numpy.zeros([nrows, npol], dtype='complex')
    rweight = weight * numpy.ones([nrows, npol])
    rtimes = numpy.zeros([nrows])
    rfrequency = numpy.zeros([nrows])
    rchannel_bandwidth = numpy.zeros([nrows])
    rantenna1 = numpy.zeros([nrows], dtype='int')
    rantenna2 = numpy.zeros([nrows], dtype='int')
    ruvw = numpy.zeros([nrows, 3])

    # Do each hour angle in turn
    for iha, ha in enumerate(times):

        # Calculate the positions of the antennas as seen for this hour angle
        # and declination
        ant_pos = xyz_to_uvw(ants_xyz, ha, phasecentre.dec.rad)
        rtimes[row:row + nrowsperintegration] = ha * 43200.0 / numpy.pi

        # Loop over all pairs of antennas. Note that a2>a1
        for a1 in range(nants):
            for a2 in range(a1 + 1, nants):
                rantenna1[row:row + nch] = a1
                rantenna2[row:row + nch] = a2

                # Loop over all frequencies and polarisations
                for ch in range(nch):
                    # noinspection PyUnresolvedReferences
                    k = frequency[ch] / constants.c.value
                    ruvw[row, :] = (ant_pos[a2, :] - ant_pos[a1, :]) * k
                    rfrequency[row] = frequency[ch]
                    rchannel_bandwidth[row] = channel_bandwidth[ch]
                    row += 1

    if zerow:
        ruvw[..., 2] = 0.0
    assert row == nrows
    rintegration_time = numpy.full_like(rtimes, integration_time)
    vis = Visibility(uvw=ruvw,
                     time=rtimes,
                     antenna1=rantenna1,
                     antenna2=rantenna2,
                     frequency=rfrequency,
                     vis=rvis,
                     weight=rweight,
                     imaging_weight=rweight,
                     integration_time=rintegration_time,
                     channel_bandwidth=rchannel_bandwidth,
                     polarisation_frame=polarisation_frame)
    vis.phasecentre = phasecentre
    vis.configuration = config
    log.info("create_visibility: %s" % (vis_summary(vis)))
    assert isinstance(vis, Visibility), "vis is not a Visibility: %r" % vis
    return vis