示例#1
0
from pybrain.structure.modules import LSTMLayer, SigmoidLayer, LinearLayer, TanhLayer, SoftmaxLayer
from pybrain.tools.validation import testOnSequenceData
from pybrain.structure.modules.neuronlayer import NeuronLayer
from pybrain.tools.xml.networkwriter import NetworkWriter
from pybrain.tools.xml.networkreader import NetworkReader

random.seed(42)

def ir(p, i, data): # p-days, i=current day
  a = np.sum([n['adj_close'] for n in data[i:i+p]]) / p
  c = data[i]['adj_close']
  return ((a - c) / c)

# prepare date
symbol = '^HSI'
yahoo_data = YahooHistorical()
yahoo_data.open(os.path.join(os.path.dirname(__file__), 'data/' + symbol + '.csv'))
training_set = np.array([n for n in yahoo_data.data if n['date'] >= date(2007, 1, 1) and n['date'] <= date(2013, 12, 31)])
test_set = np.array([n for n in yahoo_data.data if n['date'] >= date(2014, 1, 1) and n['date'] <= date(2015, 12, 31)])
rsi = yahoo_data.relative_strength(n=14)
(sma13, sma7, macd) = yahoo_data.moving_average_convergence(7, 13) # 7 days and 13 days moving average and MACD
test_label = []
training_label = [n['date'] for n in training_set]
training_list = np.array([n['adj_close'] for n in training_set])
training_target = np.zeros(len(training_list))
test_list = np.array([n['adj_close'] for n in test_set])
test_target = np.zeros(len(test_list))
test_target[list(argrelextrema(test_list, np.greater)[0])] = 1
test_target[list(argrelextrema(test_list, np.less)[0])] = -1
training_target[list(argrelextrema(training_list, np.greater)[0])] = 1
training_target[list(argrelextrema(training_list, np.less)[0])] = -1
示例#2
0
  # Decimal Scaling
  # replace nan with first non-nan
  nan = np.isnan(data)
  nnan = np.where(~nan)[0][0]
  data[:nnan] = data[nnan]

  if mean == None:
    mean = np.mean(data)
  if std == None:
    std = np.std(data)
  return (data - mean) / std, mean, std

if __name__=="__main__":
  # prepare date
  symbol = "0005.HK"
  stock_data = YahooHistorical()
  stock_data.open(os.path.join(os.path.dirname(__file__), "data/" + symbol + ".csv"))
  dataset = stock_data.get()
  date = np.array([n['date'] for n in dataset])
  close_prices = np.array([n['adj_close'] for n in dataset])
  low_prices = np.array([n['low'] for n in dataset])
  high_prices = np.array([n['high'] for n in dataset])
  volumes = np.array([n['vol'] for n in dataset])
  prices, mean, std = normalize(close_prices)
  low_prices, mean, std = normalize(low_prices, mean, std)
  high_prices, mean, std = normalize(high_prices, mean, std)
  emax = list(argrelextrema(prices, np.greater)[0])
  emin = list(argrelextrema(prices, np.less)[0])
  sma13, mean, std = normalize(talib.SMA(close_prices, 13), mean, std) # 50-day SMA
  sma50, mean, std = normalize(talib.SMA(close_prices, 50), mean, std) # 50-day SMA
  sma100, mean, std = normalize(talib.SMA(close_prices, 100), mean, std) # 100-day SMA
示例#3
0
from sys import stdout
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema

def normalize(data, mean=None, std=None):
  if mean == None:
    mean = np.mean(data)
  if std == None:
    std = np.std(data)
  x = (data - mean) / std
  return x, mean, std

# prepare date
symbol = '^HSI'
yahoo_data = YahooHistorical(data_from=date(2014, 1, 1), data_to=date(2015, 12, 31))
yahoo_data.open(os.path.join(os.path.dirname(__file__), 'data/' + symbol + '.csv'))
training_set = yahoo_data.get()
test_set = training_set[200:]
rsi = yahoo_data.relative_strength(n=14)
(sma13, sma7, macd) = yahoo_data.moving_average_convergence(7, 13) # 7 days and 13 days moving average
label = np.array([n['date'] for n in test_set])
(training_prices, m, s) = normalize(np.array([n['adj_close'] for n in training_set]))
(prices, m, s) = normalize(np.array([n['adj_close'] for n in test_set]))
(tmax, tmin) = yahoo_data.trading_range_breakout(50)
(sma13, m, s) = normalize(sma13, m, s)
(sma7, m, s) = normalize(sma7, m, s)
(tmax, m, s) = normalize(tmax, m, s)
(tmin, m, s) = normalize(tmin, m, s)
(macd, m, s) = normalize(macd)
(rsi, m, s) = normalize(rsi)
示例#4
0
import os
from data_prepare import YahooHistorical
from datetime import date, datetime
import numpy as np
from itertools import cycle
from sys import stdout
import matplotlib.pyplot as plt
from pybrain.supervised import RPropMinusTrainer, BackpropTrainer
from pybrain.datasets import SequentialDataSet
from pybrain.tools.shortcuts import buildNetwork
from pybrain.structure.modules import LSTMLayer, SigmoidLayer, LinearLayer, TanhLayer
from pybrain.tools.validation import testOnSequenceData

# prepare date
yahoo_data = YahooHistorical()
yahoo_data.open(os.path.join(os.path.dirname(__file__), 'data/^HSI.csv'))
dataset = yahoo_data.get()

# build network
net = buildNetwork(5, 25, 2, hiddenclass=LSTMLayer, outclass=SigmoidLayer, outputbias=False, recurrent=True)
net.randomize()

# build sequential dataset
train_ds = SequentialDataSet(5, 2)
for n, n1, m20 in zip(training_set, training_set[1:], sma20[-len(training_set):]):
  i = [n['open'], n['high'], n['low'], n['adj_close'], m20]
  d = (n1['adj_close'] - n['adj_close']) / n['adj_close']
  o = [-1, -1]
  if d > 0:
    o[0] = abs(d)
示例#5
0
__version__ = '0.1'

import os
from sys import stdout
import matplotlib.pyplot as plt
from data_prepare import YahooHistorical
from datetime import date, datetime
import numpy as np
from lib.features import Features
from pybrain.structure.modules import KohonenMap
import pickle

np.random.seed(42)

symbol1 = '0005.HK'
yahoo_data1 = YahooHistorical(data_from=date(2000, 1, 1), data_to=date(2015, 12, 31))
yahoo_data1.open(os.path.join(os.path.dirname(__file__), 'data/' + symbol1 + '.csv'))
data1 = yahoo_data1.get()
dataset1 = np.asarray([n['adj_close'] for n in data1])
p = 17 # 17-day
p = 5 # 5-day
nodes = 3
som = KohonenMap(p, nodes)
# som = pickle.load(open("pattern5.p", "rb"))
som.learningrate = 0.01
epochs = 1000
training_dataset = []
result = {}

# preparation
for i in xrange(p, len(dataset1)):
示例#6
0
import pickle

np.random.seed(42)


def normalize(data, mean=None, std=None):
    data = np.asarray(data)
    if mean == None:
        mean = np.mean(data)
    if std == None:
        std = np.std(data)
    return (data - mean) / std, mean, std


symbol1 = "0005.HK"
yahoo_data = YahooHistorical(data_from=date(2000, 1, 1), data_to=date(2015, 12, 31))
yahoo_data.open(os.path.join(os.path.dirname(__file__), "data/" + symbol1 + ".csv"))
data = yahoo_data.get()
close_prices = np.array([n["adj_close"] for n in data])
# low_prices = np.array([n['low'] for n in data])
# high_prices = np.array([n['high'] for n in data])
# volumes = np.array([n['vol'] for n in data])
# prices, mean, std = normalize(close_prices)
# sma10, mean, std = normalize(talib.SMA(close_prices, 10), mean, std) # 10-day SMA
# sma50, mean, std = normalize(talib.SMA(close_prices, 50), mean, std) # 50-day SMA
# sma200, mean, std = normalize(talib.SMA(close_prices, 200), mean, std) # 200-day SMA
# macd_upper, macd_middle, macd_lower = talib.MACD(close_prices, 12, 26, 9)
# mfi = talib.MFI(high_prices, low_prices, close_prices, volumes) # Money Flow Index
# rsi = talib.RSI(close_prices)
training_input = []
training_output = []