示例#1
0
def crop_img_by_lmk(
    lmk2D_txt_path,
    lmk3D_txt_path,
    lmk2D_crop_txt_path,
    lmk3D_crop_txt_path,
    img_dir,
    out_crop_dir,
    orig=False,
):
    if os.path.exists(out_crop_dir) is False:
        os.makedirs(out_crop_dir)

    fopen2D = open(lmk2D_crop_txt_path, "w")
    fopen3D = open(lmk3D_crop_txt_path, "w")

    landmarks2D, images_name = load_landmark(lmk2D_txt_path, 68)
    landmarks3D, images_name = load_landmark(lmk3D_txt_path, 86)

    count = 0
    for i in range(0, len(images_name)):
        img_name = images_name[i]
        img = cv2.imread(os.path.join(img_dir, img_name))
        (
            crop_img,
            prediction3D,
            prediction2D,
            ori_crop_img,
        ) = crop_image_and_process_landmark(img,
                                            landmarks3D[i],
                                            landmarks2D[i],
                                            size=300,
                                            orig=orig)
        write_lmk(img_name, np.reshape(prediction3D, [86, 2]), fopen3D)
        write_lmk(img_name, np.reshape(prediction2D, [68, 2]), fopen2D)
        cv2.imwrite(os.path.join(out_crop_dir, img_name), crop_img)
        if orig:
            cv2.imwrite(
                os.path.join(out_crop_dir,
                             img_name[:-4] + "_ori" + img_name[-4:]),
                ori_crop_img,
            )

        count = count + 1
        if (count % 100 == 0) | (count == len(images_name)):
            print("has run crop_img_by_lmk: " + str(count) + " / " +
                  str(len(images_name)))

    fopen2D.close()
    fopen3D.close()
    return
示例#2
0
def detect_2Dlmk_all_imgs(graph_file, img_dir, lmk3D_txt_path, lmk2D_txt_path):
    with tf.Graph().as_default():
        graph_def = tf.GraphDef()
        graph_file = graph_file

        with open(graph_file, "rb") as f:
            print("hello")
            graph_def.ParseFromString(f.read())
            tf.import_graph_def(graph_def, name="")

        with tf.Session() as sess:
            tf.initialize_all_variables().run()

            fopen = open(lmk2D_txt_path, "w")

            landmarks3D, images_name = load_landmark(lmk3D_txt_path, 86)
            count = 0
            for i in range(0, len(images_name)):
                img_name = images_name[i]
                img = cv2.imread(os.path.join(img_dir, img_name))
                lmk3D = landmarks3D[i]
                LMK2D_batch = detect_2D_landmark.detect_2Dlmk68(
                    np.array([lmk3D]), np.array([img]), sess)
                write_lmk(img_name, np.reshape(LMK2D_batch[0], [68, 2]), fopen)
                count = count + 1
                if (count % 100 == 0) | (count == len(images_name)):
                    print("has run 68pt lmk: " + str(count) + " / " +
                          str(len(images_name)))

            fopen.close()

    return LMK2D_batch
示例#3
0
def face_seg(graph_file, lmk3D_crop_txt_path, out_crop_dir, seg_dir):

    if os.path.exists(seg_dir) is False:
        os.makedirs(seg_dir)

    landmarks3D, images_name = load_landmark(lmk3D_crop_txt_path, 86)

    with tf.Graph().as_default():
        graph_def = tf.GraphDef()
        graph_file = graph_file

        with open(graph_file, "rb") as f:
            print("hello")
            graph_def.ParseFromString(f.read())
            tf.import_graph_def(graph_def, name="")

        with tf.Session() as sess:
            tf.initialize_all_variables().run()
            count = 0
            for i in range(0, len(images_name)):
                img_name = images_name[i]
                crop_img = cv2.imread(os.path.join(out_crop_dir, img_name))
                lmk3D = landmarks3D[i]
                SEG_batch, SEG_color_batch = face_segmentation.run_face_seg(
                    np.array([lmk3D]), np.array([crop_img]), sess
                )

                np.save(os.path.join(seg_dir, img_name[:-3] + "npy"), SEG_batch[0])
                cv2.imwrite(
                    os.path.join(seg_dir, img_name[:-4] + "_seg.jpg"),
                    SEG_color_batch[0],
                )
                count = count + 1
                if (count % 100 == 0) | (count == len(images_name)):
                    print(
                        "has run face_seg: "
                        + str(count)
                        + " / "
                        + str(len(images_name))
                    )
    return