示例#1
0
def main(debug=True):
    # device
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    # distribution training
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    # gradient accumulation
    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    # use the same random seed
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    # output dir is need
    #if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
    #    raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    #os.makedirs(args.output_dir, exist_ok=True)

    # data processor
    processor = QuoraProcessor()
    # processor = MrpcProcessor()
    num_labels = 2
    label_list = processor.get_labels()

    # BertTokenizer
    # tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    tokenizer = BertTokenizer.from_pretrained(
        "./pre_trained_models/bert-base-uncased-vocab.txt")
    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir,
                                                      debug=debug,
                                                      debug_length=100)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)
    print(len(train_examples))

    model = Bce_model()

    if args.fp16:
        model.half()
    model.to(device)

    # distributed parallel
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    # print(param_optimizer)

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']

    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    t_total = num_train_steps

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)

    def train(global_step, epoch):
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        model.train()
        total_loss, total_accuracy = 0, 0
        nb_tr_examples, nb_tr_steps = 0, 0
        for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch

            # 加上 label_ids 输出结果是 loss
            # loss = model(input_ids, segment_ids, input_mask, label_ids)
            out, loss = model(input_ids, segment_ids, input_mask,
                              label_ids)  # [batch, 1]
            logits = (out > args.threshold).type(torch.LongTensor)
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_train_accuracy = compute_accuracy(logits, label_ids)
            # print(tmp_train_accuracy)

            total_loss += loss.mean().item()
            total_accuracy += tmp_train_accuracy

            if n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu.
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                optimizer.backward(loss)
            else:
                loss.backward()

            # tr_loss += loss.item()
            # nb_tr_examples += input_ids.size(0)
            nb_tr_steps += 1

            if (step + 1) % args.gradient_accumulation_steps == 0:
                # modify learning rate with special warm up BERT uses
                lr_this_step = args.learning_rate * warmup_linear(
                    global_step / (t_total), args.warmup_proportion)
                for param_group in optimizer.param_groups:
                    param_group['lr'] = lr_this_step
                optimizer.step()
                optimizer.zero_grad()
                global_step += 1

            args.log_interval = 300
            if (step + 1) % args.log_interval == 0:
                # print(out)
                # print(pred)
                # print(label)
                logger.info("|----epoch {}, eclipse {}/{}, lr {:.4f},"
                            "loss {:.4f}, acc {:.4f}".format(
                                epoch, step + 1, len(train_dataloader),
                                lr_this_step, total_loss / args.log_interval,
                                total_accuracy / args.log_interval))
                total_loss, total_accuracy = 0.0, 0.0

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        # get dev examples anf dev features
        eval_examples = processor.get_dev_examples(args.data_dir,
                                                   debug=debug,
                                                   debug_length=16)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

    def eval():
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        out_all = []
        labels_all = []
        for i, (input_ids, input_mask, segment_ids,
                label_ids) in enumerate(eval_dataloader):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
            with torch.no_grad():
                out, tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                           label_ids)
            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1
            # print(out.shape)
            out_all.append(out)
            labels_all.append(label_ids)

        eval_loss = eval_loss / nb_eval_steps
        model.train()
        return eval_loss, out_all, labels_all

    if args.do_train and args.do_eval:
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            global_step = 0
            train(global_step, epoch)
            best_acc, best_f1 = 0.0, 0.0
            if args.do_eval and (args.local_rank == -1
                                 or torch.distributed.get_rank() == 0):
                eval_loss, out_all, labels_all = eval()
                out_all = torch.cat(out_all, dim=0)
                labels_all = torch.cat(labels_all, dim=0)
                labels_eval = labels_all.cpu().numpy()
                for threshold in np.linspace(0.2, 0.6, 40):
                    logits_eval = (out_all > threshold).type(torch.LongTensor)
                    logits_eval = logits_eval.detach().cpu().numpy()
                    eval_accuracy = compute_accuracy(logits_eval, labels_eval)
                    eval_f1, eval_precision, eval_recall = compute_f1_precision_recall(
                        logits_eval, labels_eval)
                    if eval_f1 > best_f1:
                        best_f1 = eval_f1
                        # Save a trained model
                        model_to_save = model.module if hasattr(
                            model,
                            'module') else model  # Only save the model it-self
                        output_model_file = os.path.join(
                            args.output_dir, "pytorch_model.bin")
                        torch.save(model_to_save.state_dict(),
                                   output_model_file)
                    logger.info(
                        'epcoh {:d}, threshold {:.4f}, accuracy {:.4f}, precision {:.4f}, recall {:.4f}, f1 {:.4f}, best_f1 {:.4f}'
                        .format(epoch, threshold, eval_accuracy,
                                eval_precision, eval_recall, eval_f1, best_f1))

    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank()
                         == 0) and not args.do_train:
        # Load a trained model that you have fine-tuned
        model_state_dict = torch.load(output_model_file)
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model, state_dict=model_state_dict)
        model.to(device)
        eval_loss, out_all, labels_all = eval()
示例#2
0
    def train(global_step, epoch):
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        model.train()
        total_loss, total_accuracy = 0, 0
        nb_tr_examples, nb_tr_steps = 0, 0
        for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch

            # 加上 label_ids 输出结果是 loss
            # loss = model(input_ids, segment_ids, input_mask, label_ids)
            out, loss = model(input_ids, segment_ids, input_mask,
                              label_ids)  # [batch, 1]
            logits = (out > args.threshold).type(torch.LongTensor)
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_train_accuracy = compute_accuracy(logits, label_ids)
            # print(tmp_train_accuracy)

            total_loss += loss.mean().item()
            total_accuracy += tmp_train_accuracy

            if n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu.
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                optimizer.backward(loss)
            else:
                loss.backward()

            # tr_loss += loss.item()
            # nb_tr_examples += input_ids.size(0)
            nb_tr_steps += 1

            if (step + 1) % args.gradient_accumulation_steps == 0:
                # modify learning rate with special warm up BERT uses
                lr_this_step = args.learning_rate * warmup_linear(
                    global_step / (t_total), args.warmup_proportion)
                for param_group in optimizer.param_groups:
                    param_group['lr'] = lr_this_step
                optimizer.step()
                optimizer.zero_grad()
                global_step += 1

            args.log_interval = 300
            if (step + 1) % args.log_interval == 0:
                # print(out)
                # print(pred)
                # print(label)
                logger.info("|----epoch {}, eclipse {}/{}, lr {:.4f},"
                            "loss {:.4f}, acc {:.4f}".format(
                                epoch, step + 1, len(train_dataloader),
                                lr_this_step, total_loss / args.log_interval,
                                total_accuracy / args.log_interval))
                total_loss, total_accuracy = 0.0, 0.0
示例#3
0
    def eval():
        eval_examples = processor.get_dev_examples(args.data_dir,
                                                   debug=debug,
                                                   debug_length=100)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        logits_all = []
        labels_all = []
        for i, (input_ids, input_mask, segment_ids,
                label_ids) in enumerate(eval_dataloader):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                # 加上 label_ids 输出是 loss, 不加 label_ids 输出是 logits, [batch, 2]
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)
                # print(logits)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = compute_accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1
            logits_all.append(logits)
            labels_all.append(label_ids)

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        # return eval_loss, eval_accuracy
        logits_eval = np.concatenate(logits_all, axis=0)
        labels_eval = np.concatenate(labels_all, axis=0)
        # print(logits_eval)
        # print(labels_eval)
        eval_f1, eval_precision, eval_recall = compute_f1_precision_recall(
            logits_eval, labels_eval)
        model.train()
        return eval_loss, eval_accuracy, eval_f1, eval_precision, eval_recall