示例#1
0
def graph():
    dp = DataPreProcessing(training_planets=1000)
    dp.create_data()
    X, Y = dp.get_graphing_data()
    x = [planet[0] for planet in X]
    y = [planet[1] for planet in X]
    z = [planet[2] for planet in X]

    #fig = plt.figure()
    #ax = Axes3D(fig)

    for i in range(len(Y)):
        if Y[i] == 1:
            plt.scatter(x[i], y[i], color='red')
        else:
            plt.scatter(x[i], y[i], color='blue')
    plt.show()
示例#2
0
    def load_data(self):
        # 570 is the sweet spot for number of training planets gives best results
        dp = DataPreProcessing(training_planets=570)
        dp.create_data()

        self.X_train, self.Y_train = dp.get_normalized_training_data()
        self.X_test, self.Y_test = dp.get_normalized_testing_data()
示例#3
0
    def load_data(self):
        dp = DataPreProcessing(training_planets=150)
        dp.create_data()

        self.X_train, self.Y_train = dp.get_normalized_training_data()
        self.X_test, self.Y_test = dp.get_normalized_testing_data()
示例#4
0
    def load_data(self):
        dp = DataPreProcessing(training_planets=5087)
        dp.create_data()

        self.X_train, self.Y_train = dp.get_scaled_standardized_training_data()
        self.X_test, self.Y_test = dp.get_scaled_standardized_testing_data()
示例#5
0
    def load_data(self):
        # 2500 is the sweet spot for number of training planets gives best results
        dp = DataPreProcessing(training_planets=5087)
        dp.create_data()

        self.X_train, self.Y_train, self.X_test, self.Y_test = dp.get_data()
示例#6
0
from exoplanet_knn import NearestNeighbor
from exoplanet_nn import NeuralNetwork
from exoplanet_tree import DecisionTree
from exoplanet_self_knn import KNearestNeighbor
from data_preprocessing import DataPreProcessing
import matplotlib.pyplot as plt

if __name__ == "__main__":
    dp = DataPreProcessing(training_planets=5087)

    print("creating models...")
    dp.create_data()
    data = dp.X_test

    nn = NeuralNetwork()
    knn = NearestNeighbor()
    tree = DecisionTree()
    self_knn = KNearestNeighbor(k=7)

    nn.load_data()
    nn.load_nn()

    knn.load_data()
    knn.load_knn()

    tree.load_data()
    tree.load_tree()

    self_knn.load_data()

    knn.predict()
示例#7
0
    axs[0].legend(['train', 'val'], loc='best')
    # summarize history for loss
    axs[1].plot(range(1, len(model_info.history['loss']) + 1), model_info.history['loss'])
    axs[1].plot(range(1, len(model_info.history['val_loss']) + 1), model_info.history['val_loss'])
    axs[1].set_title('model_info Loss')
    axs[1].set_ylabel('Loss')
    axs[1].set_xlabel('Epoch')
    axs[1].set_xticks(np.arange(1, len(model_info.history['loss']) + 1), len(model_info.history['loss']) / 10)
    axs[1].legend(['train', 'val'], loc='best')
    plt.show()



if __name__ == '__main__':

    dpp = DataPreProcessing()
    (x_train, x_test), (y_train, y_test) = dpp.load_data(img_data_path='./data/img_data.npy',
                                                         label_data_path='./data/label_data.npy')
    (x_train, x_test), (y_train, y_test) = dpp.pre_processing(x_train, x_test, y_train, y_test)
    label_list, age_list, gender_list = dpp.get_labels()
    print(x_train.shape)
    print(x_test.shape)
    print(y_train.shape)
    print(y_test.shape)

    faceNet = FaceNet(input_shape=x_train.shape[1:],
                      num_classes=len(label_list),
                      gpu=True)
    model = faceNet.build()
    model_info = model.fit(x_train, y_train,
                           batch_size=batch_size,