def __init__(self, args): self.args = args torch.manual_seed(self.args.seed) np.random.seed(self.args.seed) print('{} detection...'.format(args.dataset)) white_noise = dp.DatasetReader(white_noise=self.args.dataset, data_path=data_path, len_seg=self.args.len_seg ) self.testset = torch.tensor(torch.from_numpy(white_noise.dataset_), dtype=torch.float32) self.spots = np.load('{}/spots.npy'.format(info_path)) self.Generator = Generator(args) # Generator self.Discriminator = Discriminator(args) # Discriminator
def __init__(self, args): self.args = args torch.manual_seed(self.args.seed) np.random.seed(self.args.seed) print('{} detection...'.format(args.dataset)) white_noise = dp.DatasetReader(white_noise=self.args.dataset, data_path=data_path, data_source=args.data_source, len_seg=self.args.len_seg) _, self.testset = white_noise(args.net_name) self.spots = np.load('{}/spots.npy'.format(info_path)) self.AE = AutoEncoder(args) self.latent = np.load('{}/features/{}.npy'.format( save_path, self.file_name()))
def __init__(self, args): self.args = args torch.manual_seed(self.args.seed) np.random.seed(self.args.seed) print('> Training arguments:') for arg in vars(args): print('>>> {}: {}'.format(arg, getattr(args, arg))) white_noise = dp.DatasetReader(white_noise=self.args.dataset, data_path=data_path, data_source=args.data, len_seg=self.args.len_seg) dataset, _ = white_noise(args.net_name) self.data_loader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=True) self.Generator = Generator(args) # Generator self.Discriminator = Discriminator(args) # Discriminator
def __init__(self, args): self.args = args torch.manual_seed(self.args.seed) np.random.seed(self.args.seed) print('> Training arguments:') for arg in vars(args): print('>>> {}: {}'.format(arg, getattr(args, arg))) white_noise = dp.DatasetReader(white_noise=self.args.dataset, data_path=data_path, data_source=args.data_source, len_seg=self.args.len_seg) dataset, _ = white_noise(args.net_name) self.data_loader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=False) self.spots = np.load('{}/spots.npy'.format(info_path)) self.AE = AutoEncoder(args).to(device) # AutoEncoder self.AE.apply(self.weights_init) self.criterion = nn.MSELoss() self.vis = visdom.Visdom( env='{}'.format(self.file_name()), log_to_filename='{}/visualization/{}.log'.format( save_path, self.file_name())) plt.figure(figsize=(15, 15))