least_error = 100 target_alpha = 1 alphas = np.linspace(-20, -18, 10) for alp in alphas: w = do_regression(phi, y, alp) y_prime = (grand_order(polyx, order) * w) error = data_reading.MeanSquareError(y_prime, polyy) if error <= least_error: target_alpha = alp least_error = error return target_alpha if '__main__' == __name__: poly_data, poly_keys = data_reading.readMatFile("poly_data.mat") order = 10 X, y = grand_order(poly_data['sampx'][0], order), poly_data['sampy'] polyx, polyy = poly_data['polyx'][0], poly_data['polyy'] count_data, count_keys = data_reading.readMatFile("count_data.mat") target_alpha = choose_hyper(X, y, polyx, polyy, order) w = do_regression(X, y, target_alpha) y_prime = grand_order(polyx, order) * w fig = plt.figure("LASSO") ax = fig.add_subplot(111) ax.plot(poly_data['sampx'][0], y, color='r', linestyle='',
#-*- coding:utf-8 -*- import numpy as np import data_reading import matplotlib.pyplot as plt from data_reading import grand_order from LS import do_regression as LSregression from RLS import do_regression as RLSregression from RLS import choose_hyper as RLS_hyper from LASSO import do_regression as LASSOregression from LASSO import choose_hyper as LASSO_hyper from RR import do_regression as RRregression from BR import do_regression as BRregression from BR import choose_hyper as BR_hyper if __name__ == "__main__": poly_data, poly_keys = data_reading.readMatFile("poly_data.mat") order = 5 sampx = poly_data['sampx'][0] sampy = poly_data['sampy'] polyx = poly_data['polyx'][0] polyy = poly_data['polyy'] total_length = len(sampx) percents = [0.1, 0.25, 0.5, 0.75] result = np.zeros((4, 5)) for j in range(1000): MSEs = [] for percent in percents: try: mse = []