def test_get_sample_keywords(self): experiment = Experiment() experiment.save() sample = Sample() sample.title = "123" sample.accession_code = "123" sample.age = 23 sample.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample experiment_sample_association.experiment = experiment experiment_sample_association.save() length = OntologyTerm() length.ontology_term = "EFO:0002939" length.human_readable_name = "medulloblastoma" length.save() sk = SampleKeyword() sk.name = length sk.source, _ = Contribution.objects.get_or_create( source_name="Refinebio Tests", methods_url="ccdatalab.org") sk.sample = sample sk.save() self.assertEqual(set(experiment.get_sample_keywords()), set(["medulloblastoma"]))
def test_qn_management_command(self): """Test that the management command fires off and then does not create a job for an organism that does not have enough samples on the same platform.""" homo_sapiens = Organism(name="HOMO_SAPIENS", taxonomy_id=9606) homo_sapiens.save() experiment = Experiment() experiment.accession_code = "12345" experiment.save() codes = ["1", "2", "3", "4", "5", "6"] # We don't have a 0.tsv for code in codes: sample = Sample() sample.accession_code = code sample.title = code sample.platform_accession_code = "A-MEXP-1171" sample.manufacturer = "SLIPPERY DICK'S DISCOUNT MICROARRAYS" sample.organism = homo_sapiens sample.technology = "MICROARRAY" sample.is_processed = True sample.save() cr = ComputationalResult() cr.save() computed_file = ComputedFile() computed_file.filename = code + ".tsv" computed_file.absolute_file_path = "/home/user/data_store/QN/" + code + ".tsv" computed_file.size_in_bytes = int(code) computed_file.result = cr computed_file.is_smashable = True computed_file.save() scfa = SampleComputedFileAssociation() scfa.sample = sample scfa.computed_file = computed_file scfa.save() exsa = ExperimentSampleAssociation() exsa.experiment = experiment exsa.sample = sample exsa.save() out = StringIO() try: call_command("create_qn_target", organism="homo_sapiens", min=1, stdout=out) except SystemExit as e: # this is okay! pass stdout = out.getvalue() self.assertFalse("Target file" in stdout) # There's not enough samples available in this scenario so we # shouldn't have even made a processor job. self.assertEqual(ProcessorJob.objects.count(), 0)
def make_test_data(organism): experiment = Experiment() experiment.accession_code = "GSE51088" experiment.technology = "RNA-SEQ" experiment.save() xoa = ExperimentOrganismAssociation() xoa.experiment = experiment xoa.organism = organism xoa.save() result = ComputationalResult() result.save() sample = Sample() sample.accession_code = "GSM1237818" sample.title = "GSM1237818" sample.organism = organism sample.technology = "RNA-SEQ" sample.is_processed = True sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.s3_key = "smasher-test-quant.sf" computed_file.s3_bucket = "data-refinery-test-assets" computed_file.filename = "quant.sf" computed_file.absolute_file_path = "/home/user/data_store/QUANT/smasher-test-quant.sf" computed_file.result = result computed_file.is_smashable = True computed_file.size_in_bytes = 123123 computed_file.sha1 = ( "08c7ea90b66b52f7cd9d9a569717a1f5f3874967" # this matches with the downloaded file ) computed_file.save() computed_file = ComputedFile() computed_file.filename = "logquant.tsv" computed_file.is_smashable = True computed_file.size_in_bytes = 123123 computed_file.result = result computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save()
def test_qn_reference(self, mock_send_job): organism = Organism(name="HOMO_SAPIENS", taxonomy_id=9606) organism.save() experiment = Experiment() experiment.accession_code = "12345" experiment.save() for code in [str(i) for i in range(1, 401)]: sample = Sample() sample.accession_code = code sample.title = code sample.platform_name = f"Affymetrix {organism.name}" sample.platform_accession_code = f"A-MEXP-{organism.name}" sample.manufacturer = "AFFYMETRIX" sample.organism = organism sample.technology = "MICROARRAY" sample.is_processed = True sample.has_raw = True sample.save() cr = ComputationalResult() cr.save() computed_file = ComputedFile() computed_file.filename = code + ".tsv" computed_file.absolute_file_path = "/home/user/data_store/QN/" + code + ".tsv" computed_file.size_in_bytes = int(code) computed_file.result = cr computed_file.is_smashable = True computed_file.save() scfa = SampleComputedFileAssociation() scfa.sample = sample scfa.computed_file = computed_file scfa.save() exsa = ExperimentSampleAssociation() exsa.experiment = experiment exsa.sample = sample exsa.save() # We need more than one organism for the tests, but can't # repeat accesion codes, so halfway through just change the organism. if int(code) == 200: organism = Organism(name="MUS_MUSCULUS", taxonomy_id=111) organism.save() # Setup is done, actually run the command. command = Command() command.handle(organisms="HOMO_SAPIENS,MUS_MUSCULUS") self.assertEqual(len(mock_send_job.mock_calls), 2) self.assertEqual(ProcessorJob.objects.count(), 2)
def test_get_sample_metadata_fields_none(self): experiment = Experiment() experiment.save() sample = Sample() sample.title = "123" sample.accession_code = "123" sample.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample experiment_sample_association.experiment = experiment experiment_sample_association.save() self.assertEqual(experiment.get_sample_metadata_fields(), [])
def test_get_sample_metadata_fields(self): experiment = Experiment() experiment.save() sample = Sample() sample.title = "123" sample.accession_code = "123" sample.specimen_part = "Lung" sample.sex = "Male" sample.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample experiment_sample_association.experiment = experiment experiment_sample_association.save() self.assertEqual(set(experiment.get_sample_metadata_fields()), set(['specimen_part', 'sex']))
def prepare_experiment(ids: List[int]) -> Experiment: (homo_sapiens, _) = Organism.objects.get_or_create(name="HOMO_SAPIENS", taxonomy_id=9606) experiment = Experiment() experiment.accession_code = "12345" experiment.save() codes = [str(i) for i in ids] for code in codes: sample = Sample() sample.accession_code = code sample.title = code sample.platform_accession_code = "A-MEXP-1171" sample.manufacturer = "SLIPPERY DICK'S DISCOUNT MICROARRAYS" sample.organism = homo_sapiens sample.technology = "MICROARRAY" sample.is_processed = True sample.save() cr = ComputationalResult() cr.save() computed_file = ComputedFile() computed_file.filename = code + ".tsv" computed_file.absolute_file_path = "/home/user/data_store/QN/" + code + ".tsv" computed_file.size_in_bytes = int(code) computed_file.result = cr computed_file.is_smashable = True computed_file.save() scfa = SampleComputedFileAssociation() scfa.sample = sample scfa.computed_file = computed_file scfa.save() exsa = ExperimentSampleAssociation() exsa.experiment = experiment exsa.sample = sample exsa.save()
def create_sample_for_experiment(sample_info: Dict, experiment: Experiment) -> Sample: result = ComputationalResult() result.save() sample = Sample() sample.accession_code = sample_info["accession_code"] sample.title = sample_info.get("title", None) or sample_info["accession_code"] sample.organism = sample_info["organism"] sample.technology = sample_info["technology"] sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() if sample_info.get("filename") is not None: computed_file = ComputedFile() computed_file.filename = sample_info["filename"] computed_file.absolute_file_path = sample_info[ "data_dir"] + sample_info["filename"] computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() return sample
def test_organism_shepherd_command(self, mock_nomad, mock_send_job, mock_get_active_volumes): """Tests that the organism shepherd requeues jobs in the right order. The situation we're setting up is basically this: * There are two experiments. * One of them has 1/2 samples processed, the other 0/1 * One of them needs a DownloaderJob requeued and the other needs a ProcessorJob requued. And what we're going to test for is: * Both of the jobs that need to be requeued are requeued. * The experiment with a processed sample is requeued first because it has a higher completion percentage. """ # First, set up our mocks to prevent network calls. mock_send_job.return_value = True active_volumes = {"1", "2", "3"} mock_get_active_volumes.return_value = active_volumes def mock_init_nomad(host, port=0, timeout=0): ret_value = MagicMock() ret_value.jobs = MagicMock() ret_value.jobs.get_jobs = MagicMock() ret_value.jobs.get_jobs.side_effect = lambda: [] return ret_value mock_nomad.side_effect = mock_init_nomad zebrafish = Organism(name="DANIO_RERIO", taxonomy_id=1337, is_scientific_name=True) zebrafish.save() # Experiment that is 0% complete. zero_percent_experiment = Experiment(accession_code='ERP037000') zero_percent_experiment.technology = 'RNA-SEQ' zero_percent_experiment.save() organism_assoc = ExperimentOrganismAssociation.objects.create( organism=zebrafish, experiment=zero_percent_experiment) zero_percent = OriginalFile() zero_percent.filename = "ERR037001.fastq.gz" zero_percent.source_filename = "ERR037001.fastq.gz" zero_percent.source_url = "ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR037/ERR037001/ERR037001_1.fastq.gz" zero_percent.is_archive = True zero_percent.save() zero_percent_sample = Sample() zero_percent_sample.accession_code = 'ERR037001' zero_percent_sample.organism = zebrafish zero_percent_sample.save() assoc = OriginalFileSampleAssociation() assoc.sample = zero_percent_sample assoc.original_file = zero_percent assoc.save() assoc = ExperimentSampleAssociation() assoc.sample = zero_percent_sample assoc.experiment = zero_percent_experiment assoc.save() # TODO: fix names of all the variables to be appropriate for this test case. zero_percent_dl_job = DownloaderJob() zero_percent_dl_job.accession_code = zero_percent_sample.accession_code zero_percent_dl_job.downloader_task = "SRA" zero_percent_dl_job.start_time = timezone.now() zero_percent_dl_job.end_time = timezone.now() zero_percent_dl_job.success = False zero_percent_dl_job.save() assoc = DownloaderJobOriginalFileAssociation() assoc.downloader_job = zero_percent_dl_job assoc.original_file = zero_percent assoc.save() # Experiment that is 50% complete. fify_percent_experiment = Experiment(accession_code='ERP036000') fify_percent_experiment.technology = 'RNA-SEQ' fify_percent_experiment.save() organism_assoc = ExperimentOrganismAssociation.objects.create( organism=zebrafish, experiment=fify_percent_experiment) ## First sample, this one has been processed. successful_pj = ProcessorJob() successful_pj.accession_code = "ERR036000" successful_pj.pipeline_applied = "SALMON" successful_pj.ram_amount = 12288 successful_pj.start_time = timezone.now() successful_pj.end_time = timezone.now() successful_pj.success = True successful_pj.save() successful_og = OriginalFile() successful_og.filename = "ERR036000.fastq.gz" successful_og.source_filename = "ERR036000.fastq.gz" successful_og.source_url = "ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR036/ERR036000/ERR036000_1.fastq.gz" successful_og.is_archive = True successful_og.save() successful_sample = Sample() successful_sample.accession_code = 'ERR036000' successful_sample.organism = zebrafish successful_sample.save() assoc = OriginalFileSampleAssociation() assoc.sample = successful_sample assoc.original_file = successful_og assoc.save() assoc = ProcessorJobOriginalFileAssociation() assoc.processor_job = successful_pj assoc.original_file = successful_og assoc.save() assoc = ExperimentSampleAssociation() assoc.sample = successful_sample assoc.experiment = fify_percent_experiment assoc.save() ## Second sample, this one hasn't been processed. fifty_percent_unprocessed_og = OriginalFile() fifty_percent_unprocessed_og.filename = "ERR036001.fastq.gz" fifty_percent_unprocessed_og.source_filename = "ERR036001.fastq.gz" fifty_percent_unprocessed_og.source_url = "ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR036/ERR036001/ERR036001_1.fastq.gz" fifty_percent_unprocessed_og.is_archive = True fifty_percent_unprocessed_og.save() fifty_percent_unprocessed_sample = Sample() fifty_percent_unprocessed_sample.accession_code = 'ERR036001' fifty_percent_unprocessed_sample.organism = zebrafish fifty_percent_unprocessed_sample.save() assoc = OriginalFileSampleAssociation() assoc.sample = fifty_percent_unprocessed_sample assoc.original_file = fifty_percent_unprocessed_og assoc.save() assoc = ExperimentSampleAssociation() assoc.sample = fifty_percent_unprocessed_sample assoc.experiment = fify_percent_experiment assoc.save() fifty_percent_processor_job = ProcessorJob() fifty_percent_processor_job.pipeline_applied = "SALMON" fifty_percent_processor_job.accession_code = fifty_percent_unprocessed_sample.accession_code fifty_percent_processor_job.ram_amount = 12288 fifty_percent_processor_job.start_time = timezone.now() fifty_percent_processor_job.end_time = timezone.now() fifty_percent_processor_job.success = False fifty_percent_processor_job.save() assoc = ProcessorJobOriginalFileAssociation() assoc.processor_job = fifty_percent_processor_job assoc.original_file = fifty_percent_unprocessed_og assoc.save() # Setup is done, actually run the command. args = [] options = {"organism_name": "DANIO_RERIO"} call_command("organism_shepherd", *args, **options) # Verify that the jobs were called in the correct order. mock_calls = mock_send_job.mock_calls first_call_job_type = mock_calls[0][1][0] first_call_job_object = mock_calls[0][2]["job"] self.assertEqual(first_call_job_type, ProcessorPipeline.SALMON) self.assertEqual(first_call_job_object.pipeline_applied, fifty_percent_processor_job.pipeline_applied) self.assertEqual(first_call_job_object.ram_amount, fifty_percent_processor_job.ram_amount) self.assertIn(first_call_job_object.volume_index, active_volumes) fifty_percent_processor_job.refresh_from_db() self.assertEqual(first_call_job_object, fifty_percent_processor_job.retried_job) second_call_job_type = mock_calls[1][1][0] second_call_job_object = mock_calls[1][2]["job"] self.assertEqual(second_call_job_type, Downloaders.SRA) self.assertEqual(second_call_job_object.accession_code, zero_percent_dl_job.accession_code) self.assertEqual(second_call_job_object.downloader_task, zero_percent_dl_job.downloader_task) zero_percent_dl_job.refresh_from_db() self.assertEqual(second_call_job_object, zero_percent_dl_job.retried_job)
def test_log2(self): pj = ProcessorJob() pj.pipeline_applied = "SMASHER" pj.save() # Has non-log2 data: # https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44421 # ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE44nnn/GSE44421/miniml/GSE44421_family.xml.tgz experiment = Experiment() experiment.accession_code = "GSE44421" experiment.save() result = ComputationalResult() result.save() homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS") sample = Sample() sample.accession_code = 'GSM1084806' sample.title = 'GSM1084806' sample.organism = homo_sapiens sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1084806-tbl-1.txt" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() sample = Sample() sample.accession_code = 'GSM1084807' sample.title = 'GSM1084807' sample.organism = homo_sapiens sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1084807-tbl-1.txt" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() ds = Dataset() ds.data = {'GSE44421': ['GSM1084806', 'GSM1084807']} ds.aggregate_by = 'EXPERIMENT' ds.scale_by = 'MINMAX' ds.email_address = "*****@*****.**" ds.quantile_normalize = False ds.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = pj pjda.dataset = ds pjda.save() final_context = smasher.smash(pj.pk, upload=False) ds = Dataset.objects.get(id=ds.id) self.assertTrue(final_context['success'])
def test_dualtech_smash(self): """ """ pj = ProcessorJob() pj.pipeline_applied = "SMASHER" pj.save() # MICROARRAY TECH experiment = Experiment() experiment.accession_code = "GSE1487313" experiment.save() result = ComputationalResult() result.save() gallus_gallus = Organism.get_object_for_name("GALLUS_GALLUS") sample = Sample() sample.accession_code = 'GSM1487313' sample.title = 'GSM1487313' sample.organism = gallus_gallus sample.technology = "MICROARRAY" sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1487313_liver.PCL" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() # RNASEQ TECH experiment2 = Experiment() experiment2.accession_code = "SRS332914" experiment2.save() result2 = ComputationalResult() result2.save() sample2 = Sample() sample2.accession_code = 'SRS332914' sample2.title = 'SRS332914' sample2.organism = gallus_gallus sample2.technology = "RNA-SEQ" sample2.save() sra2 = SampleResultAssociation() sra2.sample = sample2 sra2.result = result2 sra2.save() esa2 = ExperimentSampleAssociation() esa2.experiment = experiment2 esa2.sample = sample2 esa2.save() computed_file2 = ComputedFile() computed_file2.filename = "SRP149598_gene_lengthScaledTPM.tsv" computed_file2.absolute_file_path = "/home/user/data_store/PCL/" + computed_file2.filename computed_file2.result = result2 computed_file2.size_in_bytes = 234 computed_file2.is_smashable = True computed_file2.save() assoc2 = SampleComputedFileAssociation() assoc2.sample = sample2 assoc2.computed_file = computed_file2 assoc2.save() # CROSS-SMASH BY SPECIES ds = Dataset() ds.data = {'GSE1487313': ['GSM1487313'], 'SRX332914': ['SRS332914']} ds.aggregate_by = 'SPECIES' ds.scale_by = 'STANDARD' ds.email_address = "*****@*****.**" ds.quantile_normalize = False ds.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = pj pjda.dataset = ds pjda.save() self.assertTrue(ds.is_cross_technology()) final_context = smasher.smash(pj.pk, upload=False) self.assertTrue(os.path.exists(final_context['output_file'])) os.remove(final_context['output_file']) self.assertEqual(len(final_context['final_frame'].columns), 2) # THEN BY EXPERIMENT ds.aggregate_by = 'EXPERIMENT' ds.save() dsid = ds.id ds = Dataset.objects.get(id=dsid) pj.start_time = None pj.end_time = None pj.save() final_context = smasher.smash(pj.pk, upload=False) self.assertTrue(os.path.exists(final_context['output_file'])) os.remove(final_context['output_file']) self.assertEqual(len(final_context['final_frame'].columns), 1) # THEN BY ALL ds.aggregate_by = 'ALL' ds.save() dsid = ds.id ds = Dataset.objects.get(id=dsid) pj.start_time = None pj.end_time = None pj.save() final_context = smasher.smash(pj.pk, upload=False) self.assertTrue(os.path.exists(final_context['output_file'])) self.assertEqual(len(final_context['final_frame'].columns), 2)
def test_no_smash_dupe(self): """ """ job = ProcessorJob() job.pipeline_applied = "SMASHER" job.save() experiment = Experiment() experiment.accession_code = "GSE51081" experiment.save() result = ComputationalResult() result.save() homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS") sample = Sample() sample.accession_code = 'GSM1237810' sample.title = 'GSM1237810' sample.organism = homo_sapiens sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1237810_T09-1084.PCL" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() result = ComputationalResult() result.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() sample = Sample() sample.accession_code = 'GSM1237811' sample.title = 'GSM1237811' sample.organism = homo_sapiens sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() result = ComputationalResult() result.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() ds = Dataset() ds.data = {'GSE51081': ['GSM1237810', 'GSM1237811']} ds.aggregate_by = 'ALL' ds.scale_by = 'STANDARD' ds.email_address = "*****@*****.**" ds.quantile_normalize = False ds.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = job pjda.dataset = ds pjda.save() final_context = smasher.smash(job.pk, upload=False) dsid = ds.id ds = Dataset.objects.get(id=dsid) self.assertTrue(ds.success) for column in final_context['original_merged'].columns: self.assertTrue('_x' not in column)
def test_no_smash_dupe_two(self): """ Tests the SRP051449 case, where the titles collide. Also uses a real QN target file.""" job = ProcessorJob() job.pipeline_applied = "SMASHER" job.save() experiment = Experiment() experiment.accession_code = "SRP051449" experiment.save() result = ComputationalResult() result.save() danio_rerio = Organism.get_object_for_name("DANIO_RERIO") sample = Sample() sample.accession_code = 'SRR1731761' sample.title = 'Danio rerio' sample.organism = danio_rerio sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "SRR1731761_output_gene_lengthScaledTPM.tsv" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() result = ComputationalResult() result.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() sample = Sample() sample.accession_code = 'SRR1731762' sample.title = 'Danio rerio' sample.organism = danio_rerio sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "SRR1731762_output_gene_lengthScaledTPM.tsv" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() result = ComputationalResult() result.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() ds = Dataset() ds.data = {'SRP051449': ['SRR1731761', 'SRR1731762']} ds.aggregate_by = 'SPECIES' ds.scale_by = 'NONE' ds.email_address = "*****@*****.**" ds.quantile_normalize = True ds.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = job pjda.dataset = ds pjda.save() cr = ComputationalResult() cr.save() computed_file = ComputedFile() computed_file.filename = "danio_target.tsv" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = cr computed_file.size_in_bytes = 123 computed_file.is_smashable = False computed_file.save() cra = ComputationalResultAnnotation() cra.data = {'organism_id': danio_rerio.id, 'is_qn': True} cra.result = cr cra.save() final_context = smasher.smash(job.pk, upload=False) self.assertTrue(final_context['success'])
def test_create_compendia_danio(self): job = ProcessorJob() job.pipeline_applied = "COMPENDIA" job.save() # MICROARRAY TECH experiment = Experiment() experiment.accession_code = "GSE1234" experiment.save() result = ComputationalResult() result.save() danio_rerio = Organism.get_object_for_name("DANIO_RERIO") micros = [] for file in os.listdir('/home/user/data_store/raw/TEST/MICROARRAY/'): if 'microarray.txt' in file: continue sample = Sample() sample.accession_code = file sample.title = file sample.organism = danio_rerio sample.technology = "MICROARRAY" sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = file computed_file.absolute_file_path = "/home/user/data_store/raw/TEST/MICROARRAY/" + file computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() micros.append(file) experiment = Experiment() experiment.accession_code = "GSE5678" experiment.save() result = ComputationalResult() result.save() rnas = [] for file in os.listdir('/home/user/data_store/raw/TEST/RNASEQ/'): if 'rnaseq.txt' in file: continue sample = Sample() sample.accession_code = file sample.title = file sample.organism = danio_rerio sample.technology = "RNASEQ" sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = file computed_file.absolute_file_path = "/home/user/data_store/raw/TEST/RNASEQ/" + file computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() rnas.append(file) result = ComputationalResult() result.save() qn_target = ComputedFile() qn_target.filename = "danio_target.tsv" qn_target.absolute_file_path = '/home/user/data_store/QN/danio_target.tsv' qn_target.is_qn_target = True qn_target.size_in_bytes = "12345" qn_target.sha1 = "aabbccddeeff" qn_target.result = result qn_target.save() cra = ComputationalResultAnnotation() cra.data = {} cra.data['organism_id'] = danio_rerio.id cra.data['is_qn'] = True cra.result = result cra.save() dset = Dataset() dset.data = {'GSE1234': micros, 'GSE5678': rnas} dset.scale_by = 'NONE' dset.aggregate_by = 'SPECIES' dset.quantile_normalize = False dset.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = job pjda.dataset = dset pjda.save() final_context = create_compendia.create_compendia(job.id) # Verify result self.assertEqual(len(final_context['computed_files']), 3) for file in final_context['computed_files']: self.assertTrue(os.path.exists(file.absolute_file_path))
def test_no_smash_all_diff_species(self): """ Smashing together with 'ALL' with different species is a really weird behavior. This test isn't really testing a normal case, just make sure that it's marking the unsmashable files. """ job = ProcessorJob() job.pipeline_applied = "SMASHER" job.save() experiment = Experiment() experiment.accession_code = "GSE51081" experiment.save() result = ComputationalResult() result.save() homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS") sample = Sample() sample.accession_code = 'GSM1237810' sample.title = 'GSM1237810' sample.organism = homo_sapiens sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1237810_T09-1084.PCL" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() result = ComputationalResult() result.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() experiment = Experiment() experiment.accession_code = "GSE51084" experiment.save() mus_mus = Organism.get_object_for_name("MUS_MUSCULUS") sample = Sample() sample.accession_code = 'GSM1238108' sample.title = 'GSM1238108' sample.organism = homo_sapiens sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1238108-tbl-1.txt" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() ds = Dataset() ds.data = {'GSE51081': ['GSM1237810'], 'GSE51084': ['GSM1238108']} ds.aggregate_by = 'ALL' ds.scale_by = 'STANDARD' ds.email_address = "*****@*****.**" ds.quantile_normalize = False ds.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = job pjda.dataset = ds pjda.save() final_context = smasher.smash(job.pk, upload=False) dsid = ds.id ds = Dataset.objects.get(id=dsid) print(ds.failure_reason) print(final_context['dataset'].failure_reason) self.assertEqual(final_context['unsmashable_files'], ['GSM1238108'])
def test_qn_reference(self): job = ProcessorJob() job.pipeline_applied = "QN_REFERENCE" job.save() homo_sapiens = Organism(name="HOMO_SAPIENS", taxonomy_id=9606) homo_sapiens.save() experiment = Experiment() experiment.accession_code = "12345" experiment.save() # We don't have a 0.tsv codes = [str(i) for i in range(1, 201)] for code in codes: sample = Sample() sample.accession_code = code sample.title = code sample.platform_accession_code = "A-MEXP-1171" sample.manufacturer = "SLIPPERY DICK'S DISCOUNT MICROARRAYS" sample.organism = homo_sapiens sample.technology = "MICROARRAY" sample.is_processed = True sample.save() cr = ComputationalResult() cr.save() computed_file = ComputedFile() computed_file.filename = code + ".tsv" computed_file.absolute_file_path = "/home/user/data_store/QN/" + code + ".tsv" computed_file.size_in_bytes = int(code) computed_file.result = cr computed_file.is_smashable = True computed_file.save() scfa = SampleComputedFileAssociation() scfa.sample = sample scfa.computed_file = computed_file scfa.save() exsa = ExperimentSampleAssociation() exsa.experiment = experiment exsa.sample = sample exsa.save() dataset = Dataset() dataset.data = {"12345": ["1", "2", "3", "4", "5", "6"]} dataset.aggregate_by = "ALL" dataset.scale_by = "NONE" dataset.quantile_normalize = False # We don't QN because we're creating the target now dataset.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = job pjda.dataset = dataset pjda.save() final_context = qn_reference.create_qn_reference(job.pk) self.assertTrue(final_context["success"]) self.assertTrue(os.path.exists(final_context["target_file"])) self.assertEqual(os.path.getsize(final_context["target_file"]), 562) homo_sapiens.refresh_from_db() target = homo_sapiens.qn_target.computedfile_set.latest() self.assertEqual(target.sha1, "de69d348f8b239479e2330d596c4013a7b0b2b6a") # Create and run a smasher job that will use the QN target we just made. pj = ProcessorJob() pj.pipeline_applied = "SMASHER" pj.save() ds = Dataset() ds.data = {"12345": ["1", "2", "3", "4", "5"]} ds.aggregate_by = "SPECIES" ds.scale_by = "STANDARD" ds.email_address = "*****@*****.**" ds.quantile_normalize = True ds.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = pj pjda.dataset = ds pjda.save() final_context = smasher.smash(pj.pk, upload=False) self.assertTrue(final_context["success"]) np.testing.assert_almost_equal(final_context["merged_qn"]["1"][0], -0.4379488527774811) np.testing.assert_almost_equal(final_context["original_merged"]["1"][0], -0.5762109)
def setUp(self): # Saving this for if we have protected endpoints # self.superuser = User.objects.create_superuser('john', '*****@*****.**', 'johnpassword') # self.client.login(username='******', password='******') # self.user = User.objects.create(username="******") experiment = Experiment() experiment.accession_code = "GSE000" experiment.alternate_accession_code = "E-GEOD-000" experiment.title = "NONONONO" experiment.description = "Boooooourns. Wasabi." experiment.technology = "RNA-SEQ" experiment.save() experiment = Experiment() experiment.accession_code = "GSE123" experiment.title = "Hey Ho Let's Go" experiment.description = ( "This is a very exciting test experiment. Faygo soda. Blah blah blah." ) experiment.technology = "MICROARRAY" experiment.save() self.experiment = experiment experiment_annotation = ExperimentAnnotation() experiment_annotation.data = {"hello": "world", "123": 456} experiment_annotation.experiment = experiment experiment_annotation.save() # Create 26 test organisms numbered 0-25 for pagination test, so there should be 29 organisms total (with the 3 others below) for i in range(26): Organism(name=("TEST_ORGANISM_{}".format(i)), taxonomy_id=(1234 + i)).save() ailuropoda = Organism(name="AILUROPODA_MELANOLEUCA", taxonomy_id=9646, is_scientific_name=True) ailuropoda.save() self.homo_sapiens = Organism(name="HOMO_SAPIENS", taxonomy_id=9606, is_scientific_name=True) self.homo_sapiens.save() self.danio_rerio = Organism(name="DANIO_RERIO", taxonomy_id=1337, is_scientific_name=True) self.danio_rerio.save() sample = Sample() sample.title = "123" sample.accession_code = "123" sample.is_processed = True sample.organism = ailuropoda sample.save() sample = Sample() sample.title = "789" sample.accession_code = "789" sample.is_processed = True sample.organism = ailuropoda sample.save() self.sample = sample # add qn target for sample organism result = ComputationalResult() result.commands.append("create_qn_target.py") result.is_ccdl = True result.is_public = True result.processor = None result.save() cra = ComputationalResultAnnotation() cra.result = result cra.data = {"organism_id": ailuropoda.id, "is_qn": True} cra.save() ailuropoda.qn_target = result ailuropoda.save() sample_annotation = SampleAnnotation() sample_annotation.data = {"goodbye": "world", "789": 123} sample_annotation.sample = sample sample_annotation.save() original_file = OriginalFile() original_file.save() original_file_sample_association = OriginalFileSampleAssociation() original_file_sample_association.sample = sample original_file_sample_association.original_file = original_file original_file_sample_association.save() downloader_job = DownloaderJob() downloader_job.save() download_assoc = DownloaderJobOriginalFileAssociation() download_assoc.original_file = original_file download_assoc.downloader_job = downloader_job download_assoc.save() processor_job = ProcessorJob() processor_job.save() processor_assoc = ProcessorJobOriginalFileAssociation() processor_assoc.original_file = original_file processor_assoc.processor_job = processor_job processor_assoc.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample experiment_sample_association.experiment = experiment experiment_sample_association.save() experiment.num_total_samples = 1 experiment.num_processed_samples = 1 experiment.save() result = ComputationalResult() result.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() result = ComputationalResult() result.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() processor = Processor() processor.name = "Salmon Quant" processor.version = "v9.9.9" processor.docker_image = "dr_salmon" processor.environment = '{"some": "environment"}' processor.save() computational_result_short = ComputationalResult(processor=processor) computational_result_short.save() organism_index = OrganismIndex() organism_index.index_type = "TRANSCRIPTOME_SHORT" organism_index.organism = self.danio_rerio organism_index.result = computational_result_short organism_index.absolute_directory_path = ( "/home/user/data_store/salmon_tests/TRANSCRIPTOME_INDEX/SHORT") organism_index.is_public = True organism_index.s3_url = "not_blank" organism_index.save() return
def test_make_experiment_result_associations(self): """Tests that the correct associations are made. The situation we're setting up is basically this: * tximport has been run for an experiment. * It made associations between the samples in the experiment and the ComputationalResult. * It didn't make associations between the experiment itself and the ComputationalResult. * There is a second experiment that hasn't had tximport run but shares a sample with the other experiment. * This second experiment has a sample which has not yet had tximport run on it. And what we're going to test for is: * An association is created between the tximport result and the first experiment. * An association is NOT created between the tximport result and the second experiment. """ # Get an organism to set on samples: homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS", taxonomy_id=9606) # Create the tximport processor and result: processor = Processor() processor.name = "Tximport" processor.version = "v9.9.9" processor.docker_image = "dr_salmon" processor.environment = '{"some": "environment"}' processor.save() result = ComputationalResult() result.commands.append("tximport invocation") result.is_ccdl = True result.processor = processor result.save() # Create the first experiment and it's samples: processed_experiment = Experiment() processed_experiment.accession_code = "SRP12345" processed_experiment.save() processed_sample_one = Sample() processed_sample_one.accession_code = "SRX12345" processed_sample_one.title = "SRX12345" processed_sample_one.organism = homo_sapiens processed_sample_one.save() sra = SampleResultAssociation() sra.sample = processed_sample_one sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = processed_experiment esa.sample = processed_sample_one esa.save() processed_sample_two = Sample() processed_sample_two.accession_code = "SRX12346" processed_sample_two.title = "SRX12346" processed_sample_two.organism = homo_sapiens processed_sample_two.save() sra = SampleResultAssociation() sra.sample = processed_sample_two sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = processed_experiment esa.sample = processed_sample_two esa.save() # Create the second experiment and it's additional sample. unprocessed_experiment = Experiment() unprocessed_experiment.accession_code = "SRP6789" unprocessed_experiment.save() unprocessed_sample = Sample() unprocessed_sample.accession_code = "SRX6789" unprocessed_sample.title = "SRX6789" unprocessed_sample.organism = homo_sapiens unprocessed_sample.save() sra = SampleResultAssociation() sra.sample = unprocessed_sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = unprocessed_experiment esa.sample = unprocessed_sample esa.save() esa = ExperimentSampleAssociation() esa.experiment = unprocessed_experiment esa.sample = processed_sample_two esa.save() # Run the function we're testing: make_experiment_result_associations() # Test that only one association was created and that it was # to the processed experiment: eras = ExperimentResultAssociation.objects.all() self.assertEqual(len(eras), 1) self.assertEqual(eras.first().experiment, processed_experiment)
def setUpClass(cls): super(ESTestCases, cls).setUpClass() # ref https://stackoverflow.com/a/29655301/763705 """Set up class.""" experiment = Experiment() experiment.accession_code = "GSE000-X" experiment.title = "NONONONO" experiment.description = "Boooooourns. Wasabi." experiment.technology = "RNA-SEQ" experiment.save() experiment = Experiment() experiment.accession_code = "GSE123-X" experiment.title = "Hey Ho Let's Go" experiment.description = ( "This is a very exciting test experiment. Faygo soda. Blah blah blah." ) experiment.technology = "MICROARRAY" experiment.num_processed_samples = 1 # added below experiment.num_total_samples = 1 experiment.num_downloadable_samples = 1 experiment.save() experiment_annotation = ExperimentAnnotation() experiment_annotation.data = {"hello": "world", "123": 456} experiment_annotation.experiment = experiment experiment_annotation.save() sample = Sample() sample.title = "123" sample.accession_code = "123" sample.save() organism = Organism( name="AILUROPODA_MELANOLEUCA", taxonomy_id=9646, is_scientific_name=True ) organism.save() sample = Sample() sample.title = "789" sample.accession_code = "789" sample.is_processed = True sample.organism = organism sample.save() sample_annotation = SampleAnnotation() sample_annotation.data = {"goodbye": "world", "789": 123} sample_annotation.sample = sample sample_annotation.save() original_file = OriginalFile() original_file.save() original_file_sample_association = OriginalFileSampleAssociation() original_file_sample_association.sample = sample original_file_sample_association.original_file = original_file original_file_sample_association.save() downloader_job = DownloaderJob() downloader_job.save() download_assoc = DownloaderJobOriginalFileAssociation() download_assoc.original_file = original_file download_assoc.downloader_job = downloader_job download_assoc.save() processor_job = ProcessorJob() processor_job.save() processor_assoc = ProcessorJobOriginalFileAssociation() processor_assoc.original_file = original_file processor_assoc.processor_job = processor_job processor_assoc.save() # associate the experiment with the sample experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample experiment_sample_association.experiment = experiment experiment_sample_association.save() result = ComputationalResult() result.save() # and create a qn tarjet for the sample computational_result = ComputationalResultAnnotation() computational_result.result = result computational_result.data = {"is_qn": True, "organism_id": sample.organism.id} computational_result.save() # and associate it with the sample organism sample.organism.qn_target = result sample.organism.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() result = ComputationalResult() result.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() # clear default cache and reindex # otherwise the organisms with qn_targes will be cached. cache.clear() call_command("search_index", "--rebuild", "-f")
def test_create_compendia(self): job = ProcessorJob() job.pipeline_applied = ProcessorPipeline.CREATE_COMPENDIA.value job.save() # MICROARRAY TECH experiment = Experiment() experiment.accession_code = "GSE1487313" experiment.save() result = ComputationalResult() result.save() gallus_gallus = Organism.get_object_for_name("GALLUS_GALLUS", taxonomy_id=1001) sample = Sample() sample.accession_code = "GSM1487313" sample.title = "GSM1487313" sample.organism = gallus_gallus sample.technology = "MICROARRAY" sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1487313_liver.PCL" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() # Missing sample that will be filtered sample = Sample() sample.accession_code = "GSM1487222" sample.title = "this sample will be filtered" sample.organism = gallus_gallus sample.technology = "MICROARRAY" sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1487222_empty.PCL" computed_file.absolute_file_path = "/home/user/data_store/PCL/doesnt_exists.PCL" computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() # RNASEQ TECH experiment2 = Experiment() experiment2.accession_code = "SRS332914" experiment2.save() result2 = ComputationalResult() result2.save() sample2 = Sample() sample2.accession_code = "SRS332914" sample2.title = "SRS332914" sample2.organism = gallus_gallus sample2.technology = "RNA-SEQ" sample2.save() sra2 = SampleResultAssociation() sra2.sample = sample2 sra2.result = result2 sra2.save() esa2 = ExperimentSampleAssociation() esa2.experiment = experiment2 esa2.sample = sample2 esa2.save() computed_file2 = ComputedFile() computed_file2.filename = "SRP149598_gene_lengthScaledTPM.tsv" computed_file2.absolute_file_path = "/home/user/data_store/PCL/" + computed_file2.filename computed_file2.result = result2 computed_file2.size_in_bytes = 234 computed_file2.is_smashable = True computed_file2.save() assoc2 = SampleComputedFileAssociation() assoc2.sample = sample2 assoc2.computed_file = computed_file2 assoc2.save() dset = Dataset() dset.data = { "GSE1487313": ["GSM1487313", "GSM1487222"], "SRX332914": ["SRS332914"] } dset.scale_by = "NONE" dset.aggregate_by = "SPECIES" dset.svd_algorithm = "ARPACK" dset.quantile_normalize = False dset.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = job pjda.dataset = dset pjda.save() final_context = create_compendia.create_compendia(job.id) self.assertFalse(job.success) # check that sample with no computed file was skipped self.assertTrue("GSM1487222" in final_context["filtered_samples"]) self.assertEqual( final_context["filtered_samples"]["GSM1487222"] ["experiment_accession_code"], "GSE1487313", )
def test_create_compendia_danio(self): job = ProcessorJob() job.pipeline_applied = ProcessorPipeline.CREATE_COMPENDIA.value job.save() # MICROARRAY TECH experiment = Experiment() experiment.accession_code = "GSE1234" experiment.save() result = ComputationalResult() result.save() qn_target = ComputedFile() qn_target.filename = "danio_target.tsv" qn_target.absolute_file_path = "/home/user/data_store/QN/danio_target.tsv" qn_target.is_qn_target = True qn_target.size_in_bytes = "12345" qn_target.sha1 = "aabbccddeeff" qn_target.result = result qn_target.save() danio_rerio = Organism(name="DANIO_RERIO", taxonomy_id=1, qn_target=result) danio_rerio.save() cra = ComputationalResultAnnotation() cra.data = {} cra.data["organism_id"] = danio_rerio.id cra.data["is_qn"] = True cra.result = result cra.save() result = ComputationalResult() result.save() micros = [] for file in os.listdir("/home/user/data_store/raw/TEST/MICROARRAY/"): if "microarray.txt" in file: continue sample = Sample() sample.accession_code = file sample.title = file sample.organism = danio_rerio sample.technology = "MICROARRAY" sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = file computed_file.absolute_file_path = "/home/user/data_store/raw/TEST/MICROARRAY/" + file computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() micros.append(file) experiment = Experiment() experiment.accession_code = "GSE5678" experiment.save() result = ComputationalResult() result.save() rnas = [] for file in os.listdir("/home/user/data_store/raw/TEST/RNASEQ/"): if "rnaseq.txt" in file: continue sample = Sample() sample.accession_code = file sample.title = file sample.organism = danio_rerio sample.technology = "RNASEQ" sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = file computed_file.absolute_file_path = "/home/user/data_store/raw/TEST/RNASEQ/" + file computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() rnas.append(file) # Missing sample that will be filtered sample = Sample() sample.accession_code = "GSM1487222" sample.title = "this sample will be filtered" sample.organism = danio_rerio sample.technology = "RNASEQ" sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() rnas.append(sample.accession_code) dset = Dataset() dset.data = {"GSE1234": micros, "GSE5678": rnas} dset.scale_by = "NONE" dset.aggregate_by = "SPECIES" dset.svd_algorithm = "ARPACK" dset.quantile_normalize = False dset.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = job pjda.dataset = dset pjda.save() final_context = create_compendia.create_compendia(job.id) # Verify result self.assertEqual( final_context["compendium_result"].result.computedfile_set.count(), 1) for file in final_context[ "compendium_result"].result.computedfile_set.all(): self.assertTrue(os.path.exists(file.absolute_file_path)) # test compendium_result self.assertEqual(final_context["compendium_result"].svd_algorithm, "ARPACK") self.assertEqual( final_context["compendium_result"].primary_organism.name, final_context["organism_name"]) self.assertEqual( final_context["compendium_result"].primary_organism.name, "DANIO_RERIO") self.assertEqual(final_context["compendium_result"].organisms.count(), 1) # check that sample with no computed file was skipped self.assertTrue("GSM1487222" in final_context["filtered_samples"]) self.assertEqual( final_context["filtered_samples"]["GSM1487222"] ["experiment_accession_code"], "GSE5678")
def test_create_compendia(self): job = ProcessorJob() job.pipeline_applied = "COMPENDIA" job.save() # MICROARRAY TECH experiment = Experiment() experiment.accession_code = "GSE1487313" experiment.save() result = ComputationalResult() result.save() gallus_gallus = Organism.get_object_for_name("GALLUS_GALLUS") sample = Sample() sample.accession_code = 'GSM1487313' sample.title = 'GSM1487313' sample.organism = gallus_gallus sample.technology = "MICROARRAY" sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1487313_liver.PCL" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() # RNASEQ TECH experiment2 = Experiment() experiment2.accession_code = "SRS332914" experiment2.save() result2 = ComputationalResult() result2.save() sample2 = Sample() sample2.accession_code = 'SRS332914' sample2.title = 'SRS332914' sample2.organism = gallus_gallus sample2.technology = "RNA-SEQ" sample2.save() sra2 = SampleResultAssociation() sra2.sample = sample2 sra2.result = result2 sra2.save() esa2 = ExperimentSampleAssociation() esa2.experiment = experiment2 esa2.sample = sample2 esa2.save() computed_file2 = ComputedFile() computed_file2.filename = "SRP149598_gene_lengthScaledTPM.tsv" computed_file2.absolute_file_path = "/home/user/data_store/PCL/" + computed_file2.filename computed_file2.result = result2 computed_file2.size_in_bytes = 234 computed_file2.is_smashable = True computed_file2.save() assoc2 = SampleComputedFileAssociation() assoc2.sample = sample2 assoc2.computed_file = computed_file2 assoc2.save() dset = Dataset() dset.data = {'GSE1487313': ['GSM1487313'], 'SRX332914': ['SRS332914']} dset.scale_by = 'NONE' dset.aggregate_by = 'SPECIES' dset.quantile_normalize = False dset.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = job pjda.dataset = dset pjda.save() final_context = create_compendia.create_compendia(job.id)
def test_queue_downloader_jobs_for_original_files(self, mock_send_task): """Make sure that queue_downloader_jobs queues all expected Downloader jobs for a given experiment. """ # First, create an experiment with two samples associated with it # and create two original files for each of those samples. experiment_object = Experiment() experiment_object.accession_code = "Experiment1" experiment_object.save() sample_object_1 = Sample() sample_object_1.accession_code = "Sample1" sample_object_1.platform_accession_code = "Illumina Genome Analyzer" sample_object_1.platform_accession_name = "Illumina Genome Analyzer" sample_object_1.technology = "RNA-SEQ" sample_object_1.manufacturer = "ILLUMINA" sample_object_1.source_database = "SRA" sample_object_1.save() sample_object_2 = Sample() sample_object_2.accession_code = "Sample2" sample_object_2.platform_accession_code = "Illumina Genome Analyzer" sample_object_2.platform_accession_name = "Illumina Genome Analyzer" sample_object_2.technology = "RNA-SEQ" sample_object_2.manufacturer = "ILLUMINA" sample_object_2.source_database = "SRA" sample_object_2.save() association = ExperimentSampleAssociation() association.experiment = experiment_object association.sample = sample_object_1 association.save() association = ExperimentSampleAssociation() association.experiment = experiment_object association.sample = sample_object_2 association.save() sample_1_original_files = [] sample_2_original_files = [] original_file = OriginalFile() original_file.source_url = "first_url" original_file.source_filename = "first_filename" original_file.is_downloaded = False original_file.has_raw = True original_file.save() sample_1_original_files.append(original_file) original_file_sample_association = OriginalFileSampleAssociation() original_file_sample_association.original_file = original_file original_file_sample_association.sample = sample_object_1 original_file_sample_association.save() original_file = OriginalFile() original_file.source_url = "second_url" original_file.source_filename = "second_filename" original_file.is_downloaded = False original_file.has_raw = True original_file.save() sample_2_original_files.append(original_file) original_file_sample_association = OriginalFileSampleAssociation() original_file_sample_association.original_file = original_file original_file_sample_association.sample = sample_object_1 original_file_sample_association.save() original_file = OriginalFile() original_file.source_url = "third_url" original_file.source_filename = "third_filename" original_file.is_downloaded = False original_file.has_raw = True original_file.save() sample_2_original_files.append(original_file) original_file_sample_association = OriginalFileSampleAssociation() original_file_sample_association.original_file = original_file original_file_sample_association.sample = sample_object_2 original_file_sample_association.save() original_file = OriginalFile() original_file.source_url = "fourth_url" original_file.source_filename = "fourth_filename" original_file.is_downloaded = False original_file.has_raw = True original_file.save() sample_2_original_files.append(original_file) original_file_sample_association = OriginalFileSampleAssociation() original_file_sample_association.original_file = original_file original_file_sample_association.sample = sample_object_2 original_file_sample_association.save() survey_job = SurveyJob(source_type="SRA") survey_job.save() surveyor = SraSurveyor(survey_job) surveyor.queue_downloader_job_for_original_files( sample_1_original_files, experiment_object.accession_code ) surveyor.queue_downloader_job_for_original_files( sample_2_original_files, experiment_object.accession_code ) self.assertEqual(DownloaderJob.objects.all().count(), 2)
def test_dataset_stats(self): """ Test the dataset stats endpoint """ gallus_gallus = Organism(name="GALLUS_GALLUS", taxonomy_id=9031, is_scientific_name=True) gallus_gallus.save() equus_ferus = Organism(name="EQUUS_FERUS", taxonomy_id=1114792, is_scientific_name=True) equus_ferus.save() ex = Experiment() ex.accession_code = "XYZ123" ex.title = "XYZ123" ex.description = "XYZ123" ex.technology = "MICROARRAY" ex.submitter_institution = "XYZ123" ex.save() ex2 = Experiment() ex2.accession_code = "ABC789" ex2.title = "ABC789" ex2.description = "ABC789" ex2.technology = "RNA-SEQ" ex2.submitter_institution = "Funkytown" ex2.save() sample1 = Sample() sample1.title = "1" sample1.accession_code = "1" sample1.platform_name = "AFFY" sample1.organism = self.homo_sapiens sample1.save() sample2 = Sample() sample2.title = "2" sample2.accession_code = "2" sample2.platform_name = "ILLUMINA" sample2.organism = gallus_gallus sample2.save() sample3 = Sample() sample3.title = "3" sample3.accession_code = "3" sample3.platform_name = "ILLUMINA" sample3.organism = gallus_gallus sample3.save() xoa = ExperimentOrganismAssociation() xoa.experiment = ex xoa.organism = self.homo_sapiens xoa.save() xoa = ExperimentOrganismAssociation() xoa.experiment = ex2 xoa.organism = gallus_gallus xoa.save() xoa = ExperimentOrganismAssociation() xoa.experiment = ex2 xoa.organism = equus_ferus xoa.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample1 experiment_sample_association.experiment = ex experiment_sample_association.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample2 experiment_sample_association.experiment = ex2 experiment_sample_association.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample3 experiment_sample_association.experiment = ex2 experiment_sample_association.save() jdata = json.dumps({"data": {"XYZ123": ["1"], "ABC789": ["2"]}}) response = self.client.post( reverse("create_dataset", kwargs={"version": API_VERSION}), jdata, content_type="application/json", ) self.assertEqual(response.status_code, 201) self.assertEqual(response.json()["data"], json.loads(jdata)["data"]) good_id = response.json()["id"] # Check that we can fetch these sample details via samples API response = self.client.get( reverse("samples", kwargs={"version": API_VERSION}), {"dataset_id": good_id} ) self.assertEqual(response.json()["count"], 2)
def test_qn_reference(self): job = ProcessorJob() job.pipeline_applied = "QN_REFERENCE" job.save() homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS") experiment = Experiment() experiment.accession_code = "12345" experiment.save() for code in ['1', '2', '3', '4', '5', '6']: sample = Sample() sample.accession_code = code sample.title = code sample.platform_accession_code = 'A-MEXP-1171' sample.manufacturer = "SLIPPERY DICK'S DISCOUNT MICROARRAYS" sample.organism = homo_sapiens sample.technology = "MICROARRAY" sample.is_processed = True sample.save() cr = ComputationalResult() cr.save() file = ComputedFile() file.filename = code + ".tsv" file.absolute_file_path = "/home/user/data_store/QN/" + code + ".tsv" file.size_in_bytes = int(code) file.result = cr file.is_smashable = True file.save() scfa = SampleComputedFileAssociation() scfa.sample = sample scfa.computed_file = file scfa.save() exsa = ExperimentSampleAssociation() exsa.experiment = experiment exsa.sample = sample exsa.save() dataset = Dataset() dataset.data = {"12345": ["1", "2", "3", "4", "5", "6"]} dataset.aggregate_by = "ALL" dataset.scale_by = "NONE" dataset.quantile_normalize = False # We don't QN because we're creating the target now dataset.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = job pjda.dataset = dataset pjda.save() final_context = qn_reference.create_qn_reference(job.pk) self.assertTrue(final_context['success']) self.assertTrue(os.path.exists(final_context['target_file'])) self.assertEqual(os.path.getsize(final_context['target_file']), 556) target = utils.get_most_recent_qn_target_for_organism(homo_sapiens) self.assertEqual(target.sha1, '636d72d5cbf4b9785b0bd271a1430b615feaa7ea') ### # Smasher with QN ### pj = ProcessorJob() pj.pipeline_applied = "SMASHER" pj.save() ds = Dataset() ds.data = {"12345": ["1", "2", "3", "4", "5"]} ds.aggregate_by = 'SPECIES' ds.scale_by = 'STANDARD' ds.email_address = "*****@*****.**" ds.quantile_normalize = True ds.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = pj pjda.dataset = ds pjda.save() final_context = smasher.smash(pj.pk, upload=False) self.assertTrue(final_context['success']) self.assertEqual(final_context['merged_qn']['1'][0], -0.4379488528812934) self.assertEqual(final_context['original_merged']['1'][0], -0.576210936113982) ## # Test via management command ## from django.core.management import call_command from django.test import TestCase from django.utils.six import StringIO out = StringIO() try: call_command('create_qn_target', organism='homo_sapiens', min=1, stdout=out) except SystemExit as e: # this is okay! pass stdout = out.getvalue() self.assertTrue('Target file' in stdout) path = stdout.split('\n')[0].split(':')[1].strip() self.assertTrue(os.path.exists(path)) self.assertEqual(path, utils.get_most_recent_qn_target_for_organism(homo_sapiens).absolute_file_path)
def prepare_computed_files(): # MICROARRAY TECH experiment = Experiment() experiment.accession_code = "GSE1487313" experiment.num_processed_samples = 1 experiment.save() result = ComputationalResult() result.save() gallus_gallus = Organism.get_object_for_name("GALLUS_GALLUS", taxonomy_id=1001) sample = Sample() sample.accession_code = "GSM1487313" sample.title = "GSM1487313" sample.organism = gallus_gallus sample.technology = "MICROARRAY" sample.is_processed = True sample.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1487313_liver.PCL" computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.s3_key = "GSM1487313_liver.PCL" computed_file.s3_bucket = TEST_DATA_BUCKET computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() # RNASEQ TECH experiment2 = Experiment() experiment2.accession_code = "SRP332914" experiment2.num_processed_samples = 1 experiment2.save() result2 = ComputationalResult() result2.save() sample2 = Sample() sample2.accession_code = "SRR332914" sample2.title = "SRR332914" sample2.organism = gallus_gallus sample2.technology = "RNA-SEQ" sample2.is_processed = True sample2.save() sra2 = SampleResultAssociation() sra2.sample = sample2 sra2.result = result2 sra2.save() esa2 = ExperimentSampleAssociation() esa2.experiment = experiment2 esa2.sample = sample2 esa2.save() computed_file2 = ComputedFile() computed_file2.filename = "SRP149598_gene_lengthScaledTPM.tsv" computed_file2.result = result2 computed_file2.size_in_bytes = 234 computed_file2.is_smashable = True computed_file2.s3_key = "SRP149598_gene_lengthScaledTPM.tsv" computed_file2.s3_bucket = TEST_DATA_BUCKET computed_file2.save() assoc2 = SampleComputedFileAssociation() assoc2.sample = sample2 assoc2.computed_file = computed_file2 assoc2.save()
def setUp(self): experiment = Experiment() experiment.accession_code = "GSE000" experiment.alternate_accession_code = "E-GEOD-000" experiment.title = "NONONONO" experiment.description = "Boooooourns. Wasabi." experiment.technology = "RNA-SEQ" experiment.save() self.experiment = experiment # Create some samples to attach keywords to sample = Sample() sample.accession_code = "SRR123" sample.technology = "RNA-SEQ" sample.source_database = "SRA" sample.title = "Not important" sample.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample experiment_sample_association.experiment = experiment experiment_sample_association.save() sample2 = Sample() sample2.accession_code = "SRR456" sample2.technology = "RNA-SEQ" sample2.source_database = "SRA" sample2.title = "Not important" sample2.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample2 experiment_sample_association.experiment = experiment experiment_sample_association.save() # Create the ontology terms I'm using in the tests name = OntologyTerm() name.ontology_term = "PATO:0000122" name.human_readable_name = "length" name.save() unit = OntologyTerm() unit.ontology_term = "UO:0010012" unit.human_readable_name = "thou" unit.save() contribution = Contribution() contribution.source_name = "refinebio_tests" contribution.methods_url = "ccdatalab.org" contribution.save() self.contribution = contribution
def test_bad_overlap(self): pj = ProcessorJob() pj.pipeline_applied = "SMASHER" pj.save() experiment = Experiment() experiment.accession_code = "GSE51081" experiment.save() result = ComputationalResult() result.save() homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS") sample = Sample() sample.accession_code = 'GSM1237810' sample.title = 'GSM1237810' sample.organism = homo_sapiens sample.save() sample_annotation = SampleAnnotation() sample_annotation.data = {'hi': 'friend'} sample_annotation.sample = sample sample_annotation.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "big.PCL" computed_file.absolute_file_path = "/home/user/data_store/BADSMASH/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() sample = Sample() sample.accession_code = 'GSM1237812' sample.title = 'GSM1237812' sample.organism = homo_sapiens sample.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() computed_file = ComputedFile() computed_file.filename = "small.PCL" computed_file.absolute_file_path = "/home/user/data_store/BADSMASH/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() ds = Dataset() ds.data = {'GSE51081': ['GSM1237810', 'GSM1237812']} ds.aggregate_by = 'ALL' # [ALL or SPECIES or EXPERIMENT] ds.scale_by = 'NONE' # [NONE or MINMAX or STANDARD or ROBUST] ds.email_address = "*****@*****.**" #ds.email_address = "*****@*****.**" ds.quantile_normalize = False ds.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = pj pjda.dataset = ds pjda.save() final_context = smasher.smash(pj.pk, upload=False) ds = Dataset.objects.get(id=ds.id) pj = ProcessorJob() pj.pipeline_applied = "SMASHER" pj.save() # Now, make sure the bad can't zero this out. sample = Sample() sample.accession_code = 'GSM999' sample.title = 'GSM999' sample.organism = homo_sapiens sample.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() computed_file = ComputedFile() computed_file.filename = "bad.PCL" computed_file.absolute_file_path = "/home/user/data_store/BADSMASH/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() ds = Dataset() ds.data = {'GSE51081': ['GSM1237810', 'GSM1237812', 'GSM999']} ds.aggregate_by = 'ALL' # [ALL or SPECIES or EXPERIMENT] ds.scale_by = 'NONE' # [NONE or MINMAX or STANDARD or ROBUST] ds.email_address = "*****@*****.**" #ds.email_address = "*****@*****.**" ds.quantile_normalize = False ds.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = pj pjda.dataset = ds pjda.save() final_context = smasher.smash(pj.pk, upload=False) ds = Dataset.objects.get(id=ds.id) self.assertEqual(len(final_context['final_frame']), 4)
def test_processed_samples_only(self): """ Don't return unprocessed samples """ experiment = Experiment() experiment.accession_code = "GSX12345" experiment.is_public = True experiment.save() sample = Sample() sample.title = "I am unprocessed" sample.accession_code = "GSXUnprocessed" sample.is_processed = False sample.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample experiment_sample_association.experiment = experiment experiment_sample_association.save() # we return all experiments response = self.client.get( reverse("search", kwargs={"version": API_VERSION}), {"search": "GSX12345"}) self.assertEqual(response.json()["count"], 1) # check requesting only experiments with processed samples response = self.client.get( reverse("search", kwargs={"version": API_VERSION}), { "search": "GSX12345", "num_processed_samples__gt": 0 }, ) self.assertEqual(response.json()["count"], 0) sample2 = Sample() sample2.title = "I am processed" sample2.accession_code = "GSXProcessed" sample2.is_processed = True sample2.save() experiment_sample2_association = ExperimentSampleAssociation() experiment_sample2_association.sample = sample2 experiment_sample2_association.experiment = experiment experiment_sample2_association.save() # update cached values experiment.num_total_samples = 2 experiment.num_processed_samples = 1 experiment.save() response = self.client.get( reverse("search", kwargs={"version": API_VERSION}), {"search": "GSX12345"}) self.assertEqual(response.json()["count"], 1) self.assertEqual(len(experiment.processed_samples), 1) experiment.delete() sample.delete() sample2.delete()
def prepare_job(): pj = ProcessorJob() pj.pipeline_applied = "SMASHER" pj.save() experiment = Experiment() experiment.accession_code = "GSE51081" experiment.save() result = ComputationalResult() result.save() homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS") sample = Sample() sample.accession_code = 'GSM1237810' sample.title = 'GSM1237810' sample.organism = homo_sapiens sample.save() sample_annotation = SampleAnnotation() sample_annotation.data = {'hi': 'friend'} sample_annotation.sample = sample sample_annotation.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() computed_file = ComputedFile() computed_file.filename = "GSM1237810_T09-1084.PCL" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() sample = Sample() sample.accession_code = 'GSM1237812' sample.title = 'GSM1237812' sample.organism = homo_sapiens sample.save() esa = ExperimentSampleAssociation() esa.experiment = experiment esa.sample = sample esa.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() computed_file = ComputedFile() computed_file.filename = "GSM1237812_S97-PURE.PCL" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = True computed_file.save() computed_file = ComputedFile() computed_file.filename = "GSM1237812_S97-PURE.DAT" computed_file.absolute_file_path = "/home/user/data_store/PCL/" + computed_file.filename computed_file.result = result computed_file.size_in_bytes = 123 computed_file.is_smashable = False computed_file.save() assoc = SampleComputedFileAssociation() assoc.sample = sample assoc.computed_file = computed_file assoc.save() ds = Dataset() ds.data = {'GSE51081': ['GSM1237810', 'GSM1237812']} ds.aggregate_by = 'EXPERIMENT' # [ALL or SPECIES or EXPERIMENT] ds.scale_by = 'STANDARD' # [NONE or MINMAX or STANDARD or ROBUST] ds.email_address = "*****@*****.**" #ds.email_address = "*****@*****.**" ds.quantile_normalize = False ds.save() pjda = ProcessorJobDatasetAssociation() pjda.processor_job = pj pjda.dataset = ds pjda.save() return pj