示例#1
0
def load_test_data(batch_size, dataset = 'Faces_emore'):
    transform = transforms.Compose([
        transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])  # range [0.0, 1.0] -> [-1.0,1.0]

    root = 'E:\\dataset/LFW/lfw_align_112'
    file_list = 'E:\\dataset/LFW/pairs.txt'
    dataset_LFW = LFW(root, file_list, transform=transform)

    root = 'E:\\dataset/shunde'
    file_list = 'E:\\dataset/shunde/pairs.txt'
    dataset_privacy= CFP_FP(root, file_list, transform=transform)
    
    root = 'E:\\dataset/CFP-FP/CFP_FP_aligned_112'
    file_list = 'E:\\dataset/CFP-FP/cfp_fp_pair.txt'
    dataset_CFP_FP = CFP_FP(root, file_list, transform=transform)
        
    root = 'E:\\dataset/AgeDB-30/agedb30_align_112'
    file_list = 'E:\\dataset/AgeDB-30/agedb_30_pair.txt'
    dataset_AgeDB30 = AgeDB30(root, file_list, transform=transform)  
    
    dataloaders = {'LFW': DataLoaderX(dataset_LFW, batch_size=batch_size, shuffle=False, num_workers=2),
                   'privacy': DataLoaderX(dataset_privacy, batch_size=batch_size, shuffle=False, num_workers=2),
                   'CFP_FP': DataLoaderX(dataset_CFP_FP, batch_size=batch_size, shuffle=False, num_workers=2),
                   'AgeDB30': DataLoaderX(dataset_AgeDB30, batch_size=batch_size, shuffle=False, num_workers=2)}
    
    dataset = {'LFW': dataset_LFW,'CFP_FP': dataset_CFP_FP, 'AgeDB30': dataset_AgeDB30,'privacy':dataset_privacy}
    
    dataset_sizes = {'LFW': len(dataset_LFW),'privacy':len(dataset_privacy),
                     'CFP_FP': len(dataset_CFP_FP), 'AgeDB30': len(dataset_AgeDB30)}
    
    print('training and validation data loaded')
    
    return dataloaders, dataset_sizes, dataset
示例#2
0
def load_data(batch_size, dataset = 'Faces_emore'):
    
    transform = transforms.Compose([
        transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])  # range [0.0, 1.0] -> [-1.0,1.0]
    
    root = 'data_set/LFW/lfw_align_112'
    file_list = 'data_set/LFW/pairs.txt'
    dataset_LFW = LFW(root, file_list, transform=transform)
    
    root = 'data_set/CFP-FP/CFP_FP_aligned_112'
    file_list = 'data_set/CFP-FP/cfp_fp_pair.txt'
    dataset_CFP_FP = CFP_FP(root, file_list, transform=transform)
        
    root = 'data_set/AgeDB-30/agedb30_align_112'
    file_list = 'data_set/AgeDB-30/agedb_30_pair.txt'
    dataset_AgeDB30 = AgeDB30(root, file_list, transform=transform)  
    
    if dataset == 'CASIA':
        
        root = 'data_set/CASIA_Webface_Image'
        file_list = 'data_set/CASIA_Webface_Image/webface_align_112.txt'
        dataset_train = CASIAWebFace(root, file_list, transform=transform)
        
    elif dataset == 'Faces_emore':

        root = 'data_set/faces_emore_images'
        file_list = 'data_set/faces_emore_images/faces_emore_align_112.txt'
        dataset_train = MS1M(root, file_list, transform=transform) 
    
    else:
        raise NameError('no training data exist!')
    
    dataloaders = {'train': data.DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=0),
                   'LFW': data.DataLoader(dataset_LFW, batch_size=batch_size, shuffle=False, num_workers=0),
                   'CFP_FP': data.DataLoader(dataset_CFP_FP, batch_size=batch_size, shuffle=False, num_workers=0),
                   'AgeDB30': data.DataLoader(dataset_AgeDB30, batch_size=batch_size, shuffle=False, num_workers=0)}
    
    dataset = {'train': dataset_train,'LFW': dataset_LFW,
               'CFP_FP': dataset_CFP_FP, 'AgeDB30': dataset_AgeDB30}
    
    dataset_sizes = {'train': len(dataset_train), 'LFW': len(dataset_LFW),
                     'CFP_FP': len(dataset_CFP_FP), 'AgeDB30': len(dataset_AgeDB30)}
    
    print('training and validation data loaded')
    
    return dataloaders, dataset_sizes, dataset
示例#3
0
def load_data_dataparallel(batch_size, dataset='Faces_emore'):

    transform = transforms.Compose([
        #transforms.RandomHorizontalFlip(),
        # transforms.Resize((120, 120), interpolation=3),
        # transforms.RandomCrop(112),
        transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
    ])  # range [0.0, 1.0] -> [-1.0,1.0]

    train_transform = transforms.Compose([
        transforms.ToPILImage(),
        transforms.RandomHorizontalFlip(),
        transforms.Resize((120, 120), interpolation=3),
        transforms.RandomCrop(112),
        transforms.ToTensor(),
        Cutout(n_holes=1, length=16),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ])

    root = '/data/face_dataset/LFW/lfw_align_112'
    file_list = '/data/face_dataset/LFW/pairs.txt'
    dataset_LFW = LFW(root, file_list, transform=transform)

    root = '/data/face_dataset/CFP-FP/CFP_FP_aligned_112'
    file_list = '/data/face_dataset/CFP-FP/cfp_fp_pair.txt'
    dataset_CFP_FP = CFP_FP(root, file_list, transform=transform)

    root = '/data/face_dataset/AgeDB-30/agedb30_align_112'
    file_list = '/data/face_dataset/AgeDB-30/agedb_30_pair.txt'
    dataset_AgeDB30 = AgeDB30(root, file_list, transform=transform)

    if dataset == 'CASIA':

        root = 'data_set/CASIA_Webface_Image'
        file_list = 'data_set/CASIA_Webface_Image/webface_align_112.txt'
        dataset_train = CASIAWebFace(root, file_list, transform=transform)

    elif dataset == 'Faces_emore':

        root = '/data/face_dataset/imgs'
        file_list = '/data/face_dataset/imgs/faces_emore_align_112.txt'
        dataset_train = MS1M(root, file_list, transform=train_transform)
        # train_sampler = torch.utils.data.distributed.DistributedSampler(dataset_train)

    else:
        raise NameError('no training data exist!')

    dataset_size = len(dataset_train)
    train_size = int(0.8 * dataset_size)
    valid_size = dataset_size - train_size
    train_subset, valid_subset = torch.utils.data.random_split(
        dataset_train, [train_size, valid_size])

    # 'train_dataset': data.DataLoader(dataset_train, batch_size=batch_size,  sampler=train_sampler),
    dataloaders = {
        'train_dataset':
        data.DataLoader(dataset_train, batch_size=batch_size, shuffle=True),
        'train_subset':
        data.DataLoader(train_subset, batch_size=batch_size, shuffle=True),
        'valid_subset':
        data.DataLoader(valid_subset, batch_size=batch_size, shuffle=True),
        'LFW':
        data.DataLoader(dataset_LFW, batch_size=batch_size, shuffle=False),
        'CFP_FP':
        data.DataLoader(dataset_CFP_FP, batch_size=batch_size, shuffle=False),
        'AgeDB30':
        data.DataLoader(dataset_AgeDB30, batch_size=batch_size, shuffle=False)
    }

    dataset = {
        'train_dataset': dataset_train,
        'train_subset': train_subset,
        'valid_subset': valid_subset,
        'LFW': dataset_LFW,
        'CFP_FP': dataset_CFP_FP,
        'AgeDB30': dataset_AgeDB30
    }

    dataset_sizes = {
        'train': len(dataset_train),
        'train_subset': len(train_subset),
        'valid_subset': len(valid_subset),
        'LFW': len(dataset_LFW),
        'CFP_FP': len(dataset_CFP_FP),
        'AgeDB30': len(dataset_AgeDB30)
    }

    print('training and validation data loaded')

    return dataloaders, dataset_sizes, dataset
示例#4
0
def load_data_with_MXNet_dali(batch_size, args, dataset='Faces_emore'):
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
    ])

    root = '/data/face_dataset/LFW/lfw_align_112'
    file_list = '/data/face_dataset/LFW/pairs.txt'
    dataset_LFW = LFW(root, file_list, transform=transform)

    root = '/data/face_dataset/CFP-FP/CFP_FP_aligned_112'
    file_list = '/data/face_dataset/CFP-FP/cfp_fp_pair.txt'
    dataset_CFP_FP = CFP_FP(root, file_list, transform=transform)

    root = '/data/face_dataset/AgeDB-30/agedb30_align_112'
    file_list = '/data/face_dataset/AgeDB-30/agedb_30_pair.txt'
    dataset_AgeDB30 = AgeDB30(root, file_list, transform=transform)

    if dataset == 'CASIA':
        root = 'data_set/CASIA_Webface_Image'
        file_list = 'data_set/CASIA_Webface_Image/webface_align_112.txt'
        dataset_train = CASIAWebFace(root, file_list, transform=transform)
    elif dataset == 'Faces_emore':
        path = "/data/face_dataset/"
        pipes = MXNetReaderPipeline(path,
                                    batch_size=batch_size,
                                    num_threads=4,
                                    device_id=args.local_rank,
                                    num_gpus=torch.cuda.device_count())
        pipes.build()
        train_loader = DALIGenericIterator(pipes, ['data', 'label'],
                                           pipes.epoch_size("Reader"))

        root = '/data/face_dataset/imgs/'
        file_list = '/data/face_dataset/imgs/faces_emore_align_112.txt'
        dataset_train = MS1M(root, file_list, transform=transform)
    else:
        raise NameError('no training data exist!')

    dataloaders = {
        'train_dataset':
        train_loader,
        'LFW':
        data.DataLoader(dataset_LFW,
                        batch_size=batch_size,
                        pin_memory=True,
                        shuffle=False),
        'CFP_FP':
        data.DataLoader(dataset_CFP_FP,
                        batch_size=batch_size,
                        pin_memory=True,
                        shuffle=False),
        'AgeDB30':
        data.DataLoader(dataset_AgeDB30,
                        batch_size=batch_size,
                        pin_memory=True,
                        shuffle=False)
    }

    dataset = {
        'train_dataset': dataset_train,
        'LFW': dataset_LFW,
        'CFP_FP': dataset_CFP_FP,
        'AgeDB30': dataset_AgeDB30
    }

    dataset_sizes = {
        'LFW': len(dataset_LFW),
        'CFP_FP': len(dataset_CFP_FP),
        'AgeDB30': len(dataset_AgeDB30)
    }

    print('training and validation data loaded')

    return dataloaders, dataset_sizes, dataset
         transforms.ToTensor(),  
         transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
 
 select_dataset = args.dataset
 
 if select_dataset == 'LFW':
 
     root = 'data_set/LFW/lfw_align_112'
     file_list = 'data_set/LFW/pairs.txt'
     dataset = LFW(root, file_list, transform=transform)
     
 elif select_dataset == 'CFP-FP':
 
     root = 'data_set/CFP-FP/CFP_FP_aligned_112'
     file_list = 'data_set/CFP-FP/cfp_fp_pair.txt'
     dataset = CFP_FP(root, file_list, transform=transform)
     
 elif select_dataset == 'AgeDB-30':
     
     root = 'data_set/AgeDB-30/agedb30_align_112'
     file_list = 'data_set/AgeDB-30/agedb_30_pair.txt'
     dataset = AgeDB30(root, file_list, transform=transform)    
 
 dataloader = data.DataLoader(dataset, batch_size=128, shuffle=False, num_workers=2, drop_last=False)
 print('{} data is loaded with length'.format(select_dataset), len(dataset))
 
 featureLs, featureRs = getFeature(detect_model, dataloader, device, flip = args.flip)
 scores_l2 = np.sum(np.power((featureLs.numpy() - featureRs.numpy()), 2), 1) # L2 distance
 
 ACCs, threshold = evaluation_10_fold(featureLs, featureRs, dataset, method = args.method)
 
示例#6
0
def load_data(batch_size, dataset = 'Faces_emore'):
    
    transform = transforms.Compose([
        transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])

    train_transform = transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.Resize((120, 120), interpolation=3),
        transforms.RandomCrop(112),
        transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])

    train_transform.transforms.append(Cutout(length=20))

    root = 'E:\\dataset/LFW/lfw_align_112'
    file_list = 'E:\\dataset/LFW/pairs.txt'
    dataset_LFW = LFW(root, file_list, transform=transform)
    
    root = 'E:\\dataset/CFP-FP/CFP_FP_aligned_112'
    file_list = 'E:\\dataset/CFP-FP/cfp_fp_pair.txt'
    dataset_CFP_FP = CFP_FP(root, file_list, transform=transform)
        
    root = 'E:\\dataset/AgeDB-30/agedb30_align_112'
    file_list = 'E:\\dataset/AgeDB-30/agedb_30_pair.txt'
    dataset_AgeDB30 = AgeDB30(root, file_list, transform=transform)  
    
    if dataset == 'CASIA':
        
        root = 'data_set/CASIA_Webface_Image'
        file_list = 'data_set/CASIA_Webface_Image/webface_align_112.txt'
        dataset_train = CASIAWebFace(root, file_list, transform=train_transform)
        
    elif dataset == 'Faces_emore':

        root = 'E:\\faces_emore_images'
        file_list = 'E:\\faces_emore_images\\faces_emore_align_112.txt'
        dataset_train = MS1M(root, file_list, transform=train_transform)
    
    else:
        raise NameError('no training data exist!')

    dataset_size = len(dataset_train)
    train_size = int(0.8 * dataset_size)
    valid_size = dataset_size - train_size
    train_subset, valid_subset = torch.utils.data.random_split(dataset_train, [train_size, valid_size])
    
    dataloaders = {'train_dataset': data.DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=1),
                   'train_subset': data.DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=1),
                   'valid_subset': data.DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=1),
                   'LFW': data.DataLoader(dataset_LFW, batch_size=batch_size, shuffle=False, num_workers=1),
                   'CFP_FP': data.DataLoader(dataset_CFP_FP, batch_size=batch_size, shuffle=False, num_workers=1),
                   'AgeDB30': data.DataLoader(dataset_AgeDB30, batch_size=batch_size, shuffle=False, num_workers=1)}
    
    dataset = {'train_dataset': dataset_train,'train_subset': train_subset,'valid_subset': valid_subset,'LFW': dataset_LFW,
               'CFP_FP': dataset_CFP_FP, 'AgeDB30': dataset_AgeDB30}
    
    dataset_sizes = {'train': len(dataset_train),'train_subset':len(train_subset),'valid_subset':len(valid_subset),'LFW': len(dataset_LFW),
                     'CFP_FP': len(dataset_CFP_FP), 'AgeDB30': len(dataset_AgeDB30)}
    
    print('training and validation data loaded')
    
    return dataloaders, dataset_sizes, dataset