label, from which I got rid of during training. To simplify everything I just won't use 0 as index for this (YTI) dataset. -1 - background index """ __author__ = 'Anna Kukleva' __date__ = 'September 2018' import os from ute.utils.util_functions import dir_check from ute.utils.arg_pars import opt import data_utils.FS_utils.update_argpars as fs_utils actions = ['-1.', '-2.'] fs_utils.update() dir_check(opt.gt) label2idx = {} idx2label = {} videos = {} for filename in os.listdir(opt.gt): with open(os.path.join(opt.gt, filename), 'r') as f: for line in f: line = line.strip() if label2idx.get(line, -1) == -1: idx = len(idx2label) label2idx[line] = idx idx2label[idx] = line
if __name__ == '__main__': # set root opt.dataset_root = '/sequoia/data1/akukleva/projects/unsup_temp_embed/fs' opt.subaction = 'rgb' # set feature extension and dimensionality opt.ext = 'txt' opt.feature_dim = 64 # model name can be 'mlp' or 'nothing' for no embedding (just raw features) opt.model_name = 'mlp' # load an already trained model (stored in the models directory in dataset_root) opt.load_model = False # use background noise (e.g. for YTI) opt.bg = False # granularity level eval or high opt.gr_lev = 'eval' # update log name and absolute paths update() # run temporal embedding if opt.subaction == 'all': actions = ['rgb'] all_actions(actions) else: temp_embed()