def data_set_test(test_length): for input_x, target_y in data_gen.test_set[cnf.task][test_length]: batch_xs = [] batch_ys = [] for _ in range(ATTEMPTS): xs, ys = data_gen.add_padding(input_x, target_y, test_length) batch_xs.append(xs) batch_ys.append(ys) yield batch_xs, batch_ys, target_y
def create_batch(generator, batch_size, length, for_training=False): qna = [] while len(qna) < batch_size: question, answer = next(generator) if max(len(question), len(answer)) > length: continue question_and_answer = data_gen.add_padding(question, answer, length) qna.append(question_and_answer) random.shuffle(qna) questions, answers = tuple(zip(*qna)) return [questions], [answers]