cnn_model = Model(inputs=base_model.input, outputs=outputs) return cnn_model if __name__ == "__main__": cnn_model = load_cnn_model() seq_length = 16 # sequence length of frames to downsample each video to dataset = DataSet(cnn_model) # generate Xception features and time it currtime = time.time() for ind, sample in enumerate(dataset.data): # save the sequences of frame features to npy files for eventual model training path = os.path.join( 'data', 'sequences', sample[1], sample[2] + '-' + str(seq_length) + '-Xception_features.npy') if os.path.isfile(path): print(sample) print("Sequence: {} already exists".format(ind)) else: print(sample) print("Generating and saving sequence: {}".format(ind)) sequence = dataset.extract_seq_features(sample, Xception=True) print("Time Elapsed: {}".format(time.time() - currtime))
# get the feature outputs of second-to-last layer (final FC layer) outputs = base_model.get_layer('avg_pool').output cnn_model = Model(inputs=base_model.input, outputs=outputs) return cnn_model if __name__ == "__main__": cnn_model = load_cnn_model() seq_length = 16 # sequence length of frames to downsample each video to dataset = DataSet(cnn_model) # generate InceptionV3 features and time it currtime = time.time() for ind, sample in enumerate(dataset.data): # save the sequences of frame features to npy files for eventual model training path = os.path.join('data', 'sequences', sample[1], sample[2] + '-' + str(seq_length) + '-features.npy') if os.path.isfile(path): print(sample) print("Sequence: {} already exists".format(ind)) else: print(sample) print("Generating and saving sequence: {}".format(ind)) sequence = dataset.extract_seq_features(sample) print("Time Elapsed: {}".format(time.time() - currtime))