示例#1
0
 def __stats(self, data: [[float]], y: [float]) -> []:
     stats = [{} for i in range(len(data) + 1)]
     y_stats = Statistics.describe(y)
     (y_variance, y_std) = Statistics.variance(y, y_stats["mean"])
     y_stats["covariance"] = y_variance
     y_stats["r"] = 1.0
     y_stats["pr"] = 1.0
     stats[0] = y_stats
     for i in range(len(data)):
         s = Statistics.describe(data[i])
         (covariance, r) = Statistics.covariance(data[i], y, s["mean"],
                                                 y_stats["mean"])
         s["covariance"] = covariance
         s["r"] = r
         s["pr"] = self.__partial_mat__[0][i + 1]
         stats[i + 1] = s
     return stats
示例#2
0
 def test_describe(self):
     data = [1, 2, 3, 4, 5, 6, 7, 8, 9]
     stats = Statistics.describe(data)
     self.assertEqual(stats["count"], 9)
     self.assertEqual(stats["mean"], 5.0)
     self.assertEqual(stats["variance"], 7.5)
     self.assertEqual(stats["std"], 2.7386127875258306)
     self.assertEqual(stats["min"], 1)
     self.assertEqual(stats["max"], 9)
 def __model_stats(self, y:[float], ycap:[float]) -> {}:
     error = [0.0 for x in range(len(y))]
     for i in range(len(y)):
         error[i] = y[i] - ycap[i]
     s = Statistics.describe(error)
     return s