示例#1
0
def start_collecting():
    db = Data()
    while True:
        result_dict = {}
        _from = time.time()
        result_dict['time'] = time.strftime("%Y.%m.%d - %H:%M:%S")
        cur_setup = db.get_cur_setup()
        list_ = []
        for key, item in cur_setup.items():
            list_.append([key, item])
        pool = ThreadPool(5)
        ret = pool.map(do_func, list_)
        pool.terminate()
        pool.join()
        for jdx, item in enumerate(list_):
            tmp_dict = {}
            for idx, pair in enumerate(item[1]):
                tmp_dict[pair] = ret[jdx][idx]
            result_dict[item[0]] = tmp_dict

        #print (result_dict)
        db.insert_tick(result_dict)
        end_time = time.time() - _from
        if end_time < 1:
            time.sleep(1 - end_time)
示例#2
0
 def imp_delta_plot(self):
     sql = r"""
     select t1.delta, t2.delta from tb_sec_delta t1 inner join tb_sec_delta t2
     on t1.code = t2.code and t2.seq = t1.seq + %s
     where t1.seq = 0 and t1.delta is not null and t2.delta is not null
     and t1.delta between -30 and 20
     """
     sql0 = r"select delta from tb_sec_delta where seq = 0 and delta is not null"
     imp = np.array(Data(sql0, self.cur).select_col(0))
     fig = plt.figure(figsize=(7.2, 9.6))
     plt.subplot(321)
     plt.hist(imp, bins=np.arange(-40, 30, 1), normed=True)
     plt.title("一级发行冲击分布图", fontproperties="SimHei")
     plt.xlabel("发行冲击(bp)", fontproperties="SimHei")
     for i in range(2, 7):
         data = np.array(Data(sql, self.cur, (i - 1, )).data)
         eval("plt.subplot(32{})".format(i))
         X = sm.add_constant(data[:, 0])
         Y = data[:, 1]
         model = sm.OLS(Y, X)
         res = model.fit()
         formula_string = "y = {:.4f} + {:.4f}*x".format(*res.params)
         line_x = [-30, 20]
         line_y = res.predict(sm.add_constant(line_x))
         plt.scatter(data[:, 0], data[:, 1], s=0.5)
         plt.plot(line_x, line_y, color='black')
         plt.text(line_x[0], 6, formula_string)
         plt.title("发行第{}天的收益变动散点图".format(i - 1), fontproperties="SimHei")
         plt.xlabel("发行冲击(bp)", fontproperties="SimHei")
         plt.ylabel("二级市场收益率变动(bp)", fontproperties="SimHei")
         plt.xlim(*line_x)
         plt.ylim(-7, 7)
     plt.show()
示例#3
0
    def build(cls):

        #if exists(cls.pickle_fn()):
        #   result = pickle.load(open(cls.pickle_fn(), "rb" ) )

        tv = TreeView(hide_root=True)
        tv.size_hint = 1, None
        tv.bind(minimum_height=tv.setter('height'))

        data = Data()
        groups = data.get_groups()
        ingredients = data.get_ingredients()

        def already_created(node, text):
            if hasattr(node, 'text'):
                return node.text == text
            else:
                return False

        for group in groups:
            if len(
                    list(
                        filter(
                            lambda seq: already_created(seq, group['group']),
                            tv.iterate_all_nodes()))) == 0:
                node_group = tv.add_node(TreeViewLabel(text=group['group']))

            node_group = list(
                filter(lambda seq: already_created(seq, group['group']),
                       tv.iterate_all_nodes()))
            if len(node_group) > 0:
                if len(
                        list(
                            filter(
                                lambda seq: already_created(
                                    seq, group['subgroup']),
                                tv.iterate_all_nodes()))) == 0:
                    node_subgroup = tv.add_node(
                        TreeViewLabel(text=group['subgroup']), node_group[0])

        for ingredient in ingredients:
            node_subgroup = list(
                filter(
                    lambda seq: already_created(seq, ingredient['food_subgroup'
                                                                ]),
                    tv.iterate_all_nodes()))
            if len(node_subgroup) > 0:
                tv.add_node(
                    IngredientListPopupItem(
                        prop_id=ingredient['id'],
                        name=ingredient['name'],
                        name_scientific=ingredient['name_scientific'],
                        description=ingredient['description']),
                    node_subgroup[0])
            else:
                print('error adding {0}', ingredient['name'])

        cls.tv = tv
示例#4
0
    def __init__(self):
        self.settings = Settings()
        self.data = Data()

        country_string = self.settings.get_value(Settings.COUNTRIES_MODEL)
        countries = country_string.split(",")

        self.xs = []
        self.ys = []

        # points to the end of the last batch
        self.train_batch_pointer = 0
        self.val_batch_pointer = 0

        # Get all images
        self.image_list = []
        # Workaround
        self.image_list = self.data.get_image_list_filter(maneuver=0)

        #for country in countries:
        #    self.image_list += self.data.get_image_list_filter(country=country, maneuver=0)

        for image in self.image_list:
            self.steering_deg = float(image[2]) * scipy.pi / 180
            # higher steering angles are rare, so add four times
            # if abs(steering_deg) > 40:
            #    for i in range(int(steering_deg/10-2)*4):
            #        xs.append("../captured/" + line.split()[0])
            #        ys.append(steering_deg)

            self.xs.append(os.path.join("captured/", image[1]))
            # the paper by Nvidia uses the inverse of the turning radius,
            # but steering wheel angle is proportional to the inverse of turning radius
            # so the steering wheel angle in radians is used as the output
            self.ys.append(self.steering_deg)

        # get number of images
        self.num_images = len(self.xs)

        # shuffle list of images
        self.c = list(zip(self.xs, self.ys))
        random.shuffle(self.c)
        self.xs, self.ys = zip(*self.c)

        # Training data
        self.train_xs = self.xs[:int(len(self.xs) * 0.8)]
        self.train_ys = self.ys[:int(len(self.xs) * 0.8)]

        # Validation data
        self.val_xs = self.xs[-int(len(self.xs) * 0.2):]
        self.val_ys = self.ys[-int(len(self.xs) * 0.2):]

        self.num_train_images = len(self.train_xs)
        self.num_val_images = len(self.val_xs)

        print("Total data:", len(self.xs), self.num_images)
        print("Training data:", len(self.train_xs))
        print("Validation data:", len(self.val_xs))
示例#5
0
def newsubmit():
    form = SubmitForm()
    if form.validate_on_submit():
        submitted = Data()
        submitted.c4cid = random.random()
        form.populate_obj(submitted)
        result = getClassify(submitted.c4cid, submitted.message)
        print(result)
    return redirect(url_for('index'))
示例#6
0
 def imp_minutes(self, bond_type, future_type, delta_type, day):
     """计算发行冲击当日的五分钟级的市场走势"""
     if future_type == "TF":
         future_term = 5
     elif future_type == "T":
         future_term = 10
     else:
         raise ValueError("不被接受的参数值future_type")
     # 获得delta五等分点
     sql1 = """select t1.{} from impact t1 inner join future_minute t2
               on t1.dt = date(t2.dtt) and t2.seq=0
               where t1.bondtype = %s and t2.term = %s
               """.format(delta_type)
     delta = np.array(Data(sql1, self.cur, (bond_type, future_term)).data)
     delta = pd.DataFrame(delta, columns=["delta"]).dropna()
     per_delta = [float(delta.min() - 1)]
     for p in range(20, 120, 20):
         per_delta.append(float(np.percentile(delta, p)))
     # 根据五等分点(per_delta)从数据库中选出每个分位的
     data = []
     if day == 0:
         sql2 = r"""select date_format(t2.dtt, '%%H:%%i'), avg(t2.close) from impact t1 
         inner join future_minute t2
         on t1.dt = date(t2.dtt) and t1.bondtype = %s and t2.term = %s 
         and t1.{0} > %s and t1.{0} <= %s
         group by date_format(t2.dtt, '%%H:%%i')
         """.format(delta_type)
     elif day > 0:
         sql2 = r"""select date_format(t2.dtt, '%%H:%%i'), avg(t2.close) from impact t1 
         inner join future_minute t2 inner join dts1 t3 inner join dts1 t4
         on t1.dt = t3.dt and t4.seq = t3.seq +{0} and t4.dt = date(t2.dtt)
         where t1.bondtype = %s and t2.term = %s and t1.{1} > %s and t1.{1} <= %s
         group by date_format(t2.dtt, '%%H:%%i')
         """.format(day, delta_type)
     else:
         sql2 = r"""select date_format(t2.dtt, '%%H:%%i'), avg(t2.close) from impact t1 
         inner join future_minute t2 inner join dts1 t3 inner join dts1 t4
         on t1.dt = t3.dt and t4.seq = t3.seq - {0} and t4.dt = date(t2.dtt)
         where t1.bondtype = %s and t2.term = %s and t1.{1} > %s and t1.{1} <= %s
         group by date_format(t2.dtt, '%%H:%%i')
         """.format(abs(day), delta_type)
     for i in range(len(per_delta) - 1):
         a = per_delta[i]
         b = per_delta[i + 1]
         da = Data(sql2, self.cur, (bond_type, future_term, a, b))
         time_index = da.select_col(0)
         rate = da.select_col(1)
         data.append(rate)
     data = np.array(data).T
     res = []
     for k in range(1, len(data), 1):
         res.append(100 * (data[k] - data[0]))
     res = pd.DataFrame(res,
                        index=time_index[1:],
                        columns=["一", "二", "三", "四", "五"])
     return res
示例#7
0
    def delete_selection(self):
        img_id = self._get_selected_image()
        if not img_id:
            return

        filename = Data().get_image_data(img_id)[1]
        Data().delete_image(filename)
        if os.path.exists(os.path.join("captured", filename)):
            os.remove(os.path.join("captured", filename))
        self.fill_image_list()
示例#8
0
    def test_persist_classified_with_new_records_returns_correct_diff_record_count(
            self):
        data = Data(self.db_name)
        handler = FileHandler()
        seed = handler.read_seed_csv(self.seed_file)
        data.seed_transactions(seed)
        new_data = handler.read_classified_csv(self.classified)

        result = data.persist_classified(new_data)

        self.assertEqual(144, result)
示例#9
0
 def fill_sequence_data_fields(self):
     """
     Set text of e_country and choose right cb_roadtype.
     """
     sid = self._get_selected_sequence()
     if sid:
         sequence_data = Data().get_sequence_data(sid)
         if sequence_data:
             code = Data().get_country_code(sequence_data[1])
             self.ui.e_country.setText(code)
             self.ui.cb_roadtype.setCurrentIndex(sequence_data[2] + 1)
示例#10
0
 def imp_days_minutes(self,
                      day1,
                      day2,
                      future_type,
                      bond_type="国债",
                      delta_type="delta",
                      k=5,
                      p2r_mode=0):
     """计算发行前day1日至发行后day2日的国债期货五分钟行情序列,k为等分数,默认为5等分"""
     if future_type == "TF":
         future_term = 5
     elif future_type == "T":
         future_term = 10
     else:
         raise ValueError("不被接受的参数值future_type")
     dt0 = dtt.date(2016, 1, 8)
     dt1 = dt0 + dtt.timedelta(days=day1)
     sdt = dt1.strftime("%Y-%m-%d")
     sql1 = """
     select t1.dt, t1.term, t1.{0}, t2.dt, t3.dt, t1.bondtype
     from impact t1 inner join dts1 t2 inner join dts1 t3 inner join dts1 t4
     on t1.dt = t4.dt and t2.seq = t4.seq - %s and t3.seq = t4.seq + %s and t1.bondtype = "{1}"
     where t1.{0} is not null and t1.dt >= '{2}' 
     order by t1.{0}
     """.format(delta_type, bond_type, sdt)
     data1 = Data(sql1, self.cur, (day1, day2)).data
     num = len(data1)  # 提取记录的个数,用于
     print(num)
     # 提取交易行情序列
     data2 = []
     sql2 = """
     select close from future_minute
     where date(dtt) between %s and %s and term = {}
     """.format(future_term)
     for d1 in data1:
         d2 = Data(sql2, self.cur, (d1[3], d1[4])).select_col(0)
         d2 = p2r(d2, mode=p2r_mode)
         data2.append(d2)
     n = round(num / k)  # 每个分位的记录个数
     res = []  # 结果res用于保存
     for i in range(k):
         a = i * n
         if i == k - 1:
             b = num
         else:
             b = n * (i + 1)
         r = np.mean(data2[a:b], axis=0)
         res.append(r)
     return res
示例#11
0
 def imp_days(self, bond_type, future_type):
     """将发行冲击五等分,计算之后4日的国债期货收益均值,参数bond_type为续发债类型,分别为
     国债和国开债,future_type为国债期货合约类型("TF"或者"T")"""
     if future_type == "TF":
         future_term = 5
     elif future_type == "T":
         future_term = 10
     else:
         raise ValueError("不被接受的参数值future_term")
     sql1 = """select t1.mg_delta, t2.dclose, t3.dclose, t4.dclose, t5.dclose, t6.dclose, t7.dclose, t8.dclose
     from impact t1 inner join future_delta t2 inner join future_delta t3 inner join future_delta t4
     inner join future_delta t5 inner join future_delta t6 inner join future_delta t7 inner join future_delta t8
     on t1.dt = t5.dt and t2.seq = t5.seq - 3 and t3.seq = t5.seq - 2 and t4.seq = t5.seq - 1
     and t6.seq = t5.seq+1 and t7.seq = t5.seq+2 and t8.seq = t5.seq +3
     and t2.term = t5.term and t3.term = t5.term and t4.term = t5.term and t6.term = t5.term  
     and t7.term = t5.term and t8.term = t5.term
     and t1.bondtype = %s and t5.term = %s
     order by t1.delta
     """
     data = Data(sql1, self.cur, (bond_type, future_term)).data
     data = pd.DataFrame(np.array(data))
     # 依据delta将data五等分
     n = 5
     res = []
     l = int(len(data) / n)
     for i in range(n):
         a = i * l
         b = (i + 1) * l - 1
         if i == 4:
             b = -1
         d = list(data[a:b].mean())
         d.insert(1, len(data[a:b]))
         res.append(d)
     return res
示例#12
0
class DockerExecutor():


    #Instantiating the docker client.
    def __init__(self, parsed_data):
        self.pack_info = parsed_data
        self.db =Data(constants.PACKAGE_TABLE_NAME)
        self.package = self.db.find(self.pack_info["id"])
        self.container = None
        try:
            self.docker_cli = docker.Client(base_url="tcp://192.168.99.100:2375",
                                            version="1.18",
                                            timeout=600)
        except:
            print "Docker connection Error."
        print "Setting the Client for docker...."


    #Creating the container for executing the test suites.
    def create_container(self):
        try:
            print "Creating the container...."
            self.container = self.docker_cli.create_container(image="pyhold:1.0",
                                                              tty=True)
        except:
            print "Error creating & starting the container."

    #Starting the container
    def start_container(self):
        try:
            print "Starting the container...."
            self.docker_cli.start(self.container)
        except Exception,err:
            print Exception, err
            print "Error while starting container."
示例#13
0
def imp_select_code(imp: list, cur, column="delta"):
    res = list()
    res.append(
        Data(
            r"select code from tb_sec_delta where seq=0 and {} <= %s".format(
                column), cur, (imp[0], )).select_col(0))
    for i in range(len(imp) - 1):
        res.append(
            Data(
                r"select code from tb_sec_delta where seq=0 and {} > %s and delta <= %s"
                .format(column), cur, (imp[i], imp[i + 1])).select_col(0))
    res.append(
        Data(
            r"select code from tb_sec_delta where seq=0 and {} > %s".format(
                column), cur, (imp[-1], )).select_col(0))
    return res
示例#14
0
 def get_last_position_value(self, cash, ps, dt):
     """对于持仓最后一天的持仓市值的计算,get_position_price无能为力,因此特别编制本方法来处理"""
     symbols = ps.keys()
     if symbols:
         price_list = []
         sql = r"""select distinct dirty from tb_sec where dt = %s and code0 = %s"""
         for symbol in symbols:
             price_list.append(
                 Data(sql, self.cur, (dt, symbol)).select_col(0))
         if price_list:
             prices = np.matrix(price_list, dtype=float)
         else:
             raise ValueError("未从数据库中查找到所需价格信息,日期:{}、品种:{}".format(
                 dt, price_list))
         volumes = np.matrix(list(ps.values()), dtype=float)
         asset_matrix = np.dot(volumes, prices)
         cash_matrix = np.matrix(cash)
         total_matrix = asset_matrix + cash_matrix
         data_matrix = np.concatenate(
             (cash_matrix, asset_matrix, total_matrix), axis=1)
         return pd.DataFrame(data_matrix,
                             index=pd.to_datetime([dt]),
                             columns=["cash", "asset", "total"])
     else:
         return pd.DataFrame([[cash, 0, cash]],
                             index=pd.to_datetime([dt]),
                             columns=["cash", "asset", "total"])
示例#15
0
    def fill_image_list(self):
        """
        Fill list_image with data.
        """
        data = Data()
        list_images = self.ui.list_images

        model = QStandardItemModel(list_images)
        images = data.get_image_list(self.sequence_id)
        if len(images) > 0:
            for image in images:
                item = QStandardItem(
                    "%s - %s" % (image[1], functions.get_indicator(image[5])))
                item.setEditable(False)
                item.setData(str(image[0]), QtCore.Qt.UserRole)
                model.appendRow(item)
        list_images.setModel(model)
示例#16
0
class Controller:
    def __init__(self, classifier, db_name, class_csv_name):
        self.data = Data(db_name)
        self.handler = FileHandler()
        self.classifier = classifier
        self.class_csv = class_csv_name

    def get_new_transactions(self, file_name):
        df = self.handler.read_csv(file_name)
        return self.data.persist_unclassified(df)

    def seed_database(self, file_name):
        df = self.handler.read_seed_csv(file_name)
        return self.data.seed_transactions(df)

    def classify_new_transactions(self):
        self.__train_model()
        classified = self.__classify_new()
        if classified is not None:
            self.__persist_prediction(classified)

    def all_to_csv(self, file_name):
        self.data.get_classified().to_csv(file_name)

    def __train_model(self):
        train_data = self.data.get_classified()
        self.classifier.train(train_data)

    def __classify_new(self):
        unclassified = self.data.get_unclassified()
        if unclassified.shape[0] <= 0:
            return None
        return self.classifier.classify(unclassified)

    # TODO this module cleans up merge from
    def __persist_prediction(self, classified):
        self.data.persist_prediction(classified)
        self.handler.write_csv(classified, self.class_csv)

    def confirm_csv_classification(self):
        df = self.handler.read_classified_csv(self.class_csv)
        return self.data.persist_classified(df)

    def get_nett_balance(self, start, end):
        df = self.data.get_range("transactions", start, end)
        return sum(df["Amount"].astype(float) * df["Labels"].astype(int))
示例#17
0
 def get_position_price(self, ps: dict, dt1, dt2):
     """根据持仓从数据库中提取相应的价格数据,以矩阵形式返回结果,行表示品种,列表示日期,参数ps表示字典,键为品种,值
     为持仓量,dt1表示开始日期,dt2表示结束日期,价格序列包含开始日期而不包含结束日期"""
     symbols = ps.keys()
     price_list = []
     sql = r"""select distinct dirty from tb_sec where dt >= %s and dt < %s and code0 = %s order by dt"""
     for symbol in symbols:
         price_list.append(
             Data(sql, self.cur, (dt1, dt2, symbol)).select_col(0))
     if price_list:
         prices = np.matrix(price_list, dtype=float)
     else:
         prices = None
     dts = Data(
         "select distinct dt from tb_sec where dt >= %s and dt < %s order by dt",
         self.cur, (dt1, dt2)).select_col(0)
     return prices, dts
示例#18
0
 def delete_selected_sequence(self):
     """
     b_sequenceDelete:
     Delete the selected sequence.
     """
     sid = self._get_selected_sequence()
     Data().delete_sequence(sid)
     self.fill_sequence_list()
示例#19
0
def migrate():
    data = Data(batch=True)

    sequences = []
    # read sequence.txt
    with open("captured/sequence.txt") as f:
        for line in f:
            split = line.split()
            # Start, End, Country, Type
            timestamp = datetime.datetime.fromtimestamp(
                round(
                    os.path.getctime(
                        os.path.join("captured", "%s.png" %
                                     split[0])))).strftime("%Y-%m-%d %H:%M:%S")
            sid = data.add_sequence(split[2],
                                    int(split[3]),
                                    timestamp=timestamp)
            sequences.append([int(split[0]), int(split[1]), sid])

    # read data.txt
    num_datasets = sum(1 for line in open("captured/data.txt"))
    datasets_writen = 0
    percent = round(num_datasets / 100)
    with open("captured/data.txt") as f:
        for line in f:
            datasets_writen += 1
            split = line.split()
            sid = get_sid(sequences, int(split[0].split(".png")[0]))
            data.add_image(split[0], split[1], split[2], split[3], split[4],
                           sid)

            if datasets_writen % percent == 0:
                print("%d %%" % round(datasets_writen / num_datasets * 100))

    data.append()
示例#20
0
 def append_sequence_changes(self):
     """
     b_sequenceApply:
     Update data of selected sequence.
     """
     sid = self._get_selected_sequence()
     code = self.ui.e_country.text()
     road_type = self.ui.cb_roadtype.currentIndex() - 1
     Data().update_sequence(sid, code, road_type)
示例#21
0
 def get_avg_std_by_term(self, terms, column="delta"):
     """计算不同期限的发行冲击的均值与标准差"""
     res = []
     sql = "select count(*), avg({0}), stddev_samp({0}) from tb_sec_delta " \
           "where seq = 0 and term = %s".format(column)
     for t in terms:
         num, avg, std = Data(sql, self.cur, (t, )).data[0]
         res.append([num, avg, std])
     return res
示例#22
0
    def fill_sequence_list(self):
        """
        Fill sequence_list with data.
        """
        data = Data()
        sequence_list = self.ui.sequence_list

        model = QStandardItemModel(sequence_list)
        sequences = data.get_sequence_list()
        if len(sequences) > 0:
            for sequence in sequences:
                note = ""
                if sequence[4] is not None:
                    note = " - %s" % sequence[4]
                item = QStandardItem("%s%s" % (sequence[1], note))
                item.setEditable(False)
                item.setData(str(sequence[0]), QtCore.Qt.UserRole)
                model.insertRow(0, item)
        sequence_list.setModel(model)
示例#23
0
    async def handler(self, conn, loop):
        obj=Data()
        hash=SHA256.new()
        username=""
        password=""
        public_key=""
        await loop.sock_sendall(conn, str.encode("Enter username: "******"utf-8")
        if res:
            username=res
        await loop.sock_sendall(conn, str.encode("Enter password: "******"users", username, password)
        if not result:
            obj.user_entry(username, password)

        await loop.sock_sendall(conn, str.encode("Enter public key: "))
        res_en=await loop.sock_recv(conn, 2048)
        res=res_en.decode("utf-8")
        if res:
            try:
                public_key=eval(res)
            except Exception as e:
                print(str(e))

        await loop.sock_sendall(conn, str.encode("Name a group that you would want to create or join: "))
        res_en=await loop.sock_recv(conn, 2048)
        res=res_en.decode("utf-8")
        if res is not None:
            obj.create_table(res)
            key=random.randint(100000, 1000000)
            key=self.crypt.encrypt(str(key), public_key)
            await loop.sock_sendall(conn, str.encode(key))
            result=obj.check_table(res, username, password)
            if not result:
                obj.group_entry(res, username, password, key)

        conn.close()
示例#24
0
 def __init__(self, parsed_data):
     self.pack_info = parsed_data
     self.db =Data(constants.PACKAGE_TABLE_NAME)
     self.package = self.db.find(self.pack_info["id"])
     self.container = None
     try:
         self.docker_cli = docker.Client(base_url="tcp://192.168.99.100:2375",
                                         version="1.18",
                                         timeout=600)
     except:
         print "Docker connection Error."
     print "Setting the Client for docker...."
示例#25
0
 def imp_seq(self, imp: list, seq: list, column="delta"):
     """返回根据冲击大小与seq先后排序的二维收益率差"""
     res = list()
     sql = r"""select avg({}) from tb_sec_delta where code in %s and seq = %s""".format(
         column)
     codes = imp_select_code(imp, self.cur, column=column)
     for code in codes:
         num = len(code)
         d = list([num])
         for s in seq:
             d.append(Data(sql, self.cur, (code, s)).data[0][0])
         res.append(d)
     return res
示例#26
0
 def imp_future(self, imp: list, seq: list, term=10, delta="dsrate"):
     """"发行冲击对国债期货市场影响"""
     res = list()
     sql0 = """
     select count(*), avg(t1.delta) from tb_sec_delta t1 inner join future_delta t2
     on t1.dt = t2.dt
     where t1.code in %s and t2.term = %s and t1.seq = 0
     """
     sql = """
     select avg(t2.{})
     from tb_sec_delta t1 left outer join future_delta t2
     on t1.dt = t2.dt
     where t1.code in %s and t2.term = %s and t1.seq = %s
     """.format(delta)
     codes = imp_select_code(imp, self.cur)
     for code in codes:
         data_imp = Data(sql0, self.cur, (code, term)).data
         num = data_imp[0][0]
         avg_imp = data_imp[0][1]
         d = list([num, avg_imp])
         for s in seq:
             d.append(Data(sql, self.cur, (code, term, s)).data[0][0])
         res.append(d)
     return res
示例#27
0
def success():

    if request.method == 'POST':
        action = request.form["action"]
        # Adding a new data into database
        if action == "add":
            name = request.form["Project_name"]
            programming_language = request.form["Programming_Language"]
            description = request.form["description"]
            git_url = request.form["git_url"]
            request_data = Data(name, programming_language, description,
                                git_url)
            db.session.add(request_data)
            db.session.commit()
            return render_template("success.html")

        # Modify already exist database
        elif action == "modify":
            id = request.form["id"]
            name = request.form["Project_name"]
            programming_language = request.form["Programming_Language"]
            description = request.form["description"]
            git_url = request.form["git_url"]
            modify_object = Data.query.filter_by(id=id).one()
            if len(name) != 0:
                modify_object.name = name
            if len(programming_language) != 0:
                modify_object.programming_language = programming_language
            if len(description) != 0:
                modify_object.description = description
            if len(git_url) != 0:
                modify_object.git_url = git_url
            db.session.commit()
            return render_template("success.html")

        # Delete an instance from data
        elif action == "delete":
            id = request.form["id"]
            delete_object = Data.query.filter_by(id=id).one()
            db.session.delete(delete_object)
            db.session.commit()
            return render_template("success.html")
示例#28
0
        def listen(ch, method, properties, body):
            self.datasql = Data(constants.PACKAGE_TABLE_NAME)
            self.rwriter = BuildLogWriter()
            print colored("[x] Received -- ", 'magenta') , body
            self.data = body
            self.parsed_data = json.loads(self.data)
            print self.parsed_data
            self.pack = self.datasql.find(self.parsed_data["id"])
            print "PACKAGE => ",self.pack
            self.file_name = str(self.datasql.find(self.parsed_data["id"],select="file_name")[0][0])
            self.lib_name = str(self.datasql.find(self.parsed_data["id"],select="lib_name")[0][0])
            dock = DockerExecutor(self.parsed_data)
            dock.create_container()
            dock.start_container()
            print dock.exec_command("mkdir testex")
            package_endpoint = constants.PACKAGE_ENDPT + str(self.file_name)
            print dock.exec_command('bash -c "cd testex && wget %s"' % str(package_endpoint))
            print dock.exec_command('bash -c "cd testex && tar -xvf %s"' % self.file_name)

            #Requirements Installation
            self.req_data = dock.exec_command('bash -c "cd / && cd testex && cd %s && pip install -r requirements.txt"' % self.lib_name)
            print self.req_data
            self.rwriter.write(self.lib_name, "requirements_installation.log", self.req_data)

            #Custom build commands
            self.build_commands = self.datasql.find(self.parsed_data["id"],select="commands")
            if(not(self.build_commands[0][0] == "")):
                print "BUILD COMMANDS => ", self.build_commands[0][0]
                commands = self.build_commands[0][0].split(",")
                for com in enumerate(commands):
                    self.req_data = dock.exec_command('bash -c "cd / && cd testex && cd %s && %s"' % (self.lib_name, com[1]))
                    print self.req_data
                    self.rwriter.write(self.lib_name,"custom_build_" + str(com[0]) + ".log", self.req_data)

            #Building from source
            self.build_data = dock.exec_command('bash -c "cd / && cd testex && cd %s && python setup.py install"' % self.lib_name)
            print self.build_data
            self.rwriter.write(self.lib_name, "build.log", self.build_data)

            #Stopping the container
            dock.stop_container()
示例#29
0
 def imp_hist_plot(self):
     """绘制发行冲击的直方分布图,分别使用收益率变动与净价变动来衡量"""
     fig, axes = plt.subplots(2, 2, figsize=(9.6, 4.8))
     fig.subplots_adjust(hspace=0.5)
     i = 0
     for bondtype in ["00", "02"]:
         j = 0
         for column in ["delta", "dprice"]:
             sql = r"""select {0} from tb_sec_delta where seq = 0 and {0} is not null and 
                        code0 regexp '[:alnum:]{{2}}{1}.*'""".format(
                 column, bondtype)
             imp = np.array(Data(sql, self.cur).select_col(0))
             if column == "delta":
                 if bondtype == "00":
                     bins = np.arange(-40, 30, 1)
                     title = "国债发行冲击(BP)分布图"
                 elif bondtype == "02":
                     bins = np.arange(-40, 30, 1)
                     title = "国开债发行冲击(BP)分布图"
                 else:
                     raise ValueError("错误的参数值bondtype")
             elif column == "dprice":
                 if bondtype == "02":
                     bins = np.arange(-2, 4, 0.01)
                     title = "国开债发行冲击(元)分布图"
                 elif bondtype == "00":
                     bins = np.arange(-2, 4, 0.01)
                     title = "国债发行冲击(元)分布图"
                 else:
                     raise ValueError("错误的参数值bondtype")
             else:
                 raise ValueError("错误的参数值column")
             axes[i, j].hist(imp, bins=bins)
             axes[i, j].set_title(title,
                                  fontproperties="SimHei",
                                  fontsize=20)
             j += 1
         i += 1
     fig.show()
示例#30
0
 def get_paymentdt(self, codes, time1, time2):
     """根据持仓债券代码查询到期日期,以及付息额,如果存在付息情况,则返回结果中包含债券代码与付息额"""
     res = []
     if codes:
         sql = r"select * from payment where code in %s"
         data = Data(sql, self.cur, (codes, )).data
         for d in data:
             if time1.year == time2.year:
                 dt = dtt.date(time1.year, d[1].month, d[1].day)
                 if time1 < dt <= time2:
                     res.append([d[0], dt, d[2]])
             elif time1.year < time2.year:
                 delta_year = time2.year - time1.year
                 if delta_year == 1:
                     if d[1].month > time1.month:
                         dt = dtt.date(time1.year, d[1].month, d[1].day)
                         res.append([d[0], dt, d[2]])
                         if d[1].month < time2.month:
                             dt = dtt.date(time2.year, d[1].month, d[1].day)
                             res.append([d[0], dt, d[2]])
                     elif d[1].month < time2.month:
                         dt = dtt.date(time2.year, d[1].month, d[1].day)
                         res.append([d[0], dt, d[2]])
                     elif d[1].month == time1.month:
                         if d[1].day > time1.day:
                             dt = dtt.date(time1.year, d[1].month, d[1].day)
                             res.append([d[0], dt, d[2]])
                     elif d[1].month == time2.month:
                         if d[1].day <= time2.day:
                             dt = dtt.date(time2.year, d[1].month, d[1].day)
                             res.append([d[0], dt, d[2]])
                 else:
                     pass  # delta_year的年限超过1年已超出本项目的需要,因此虽然有考虑这种情况但是不做处理
             else:
                 raise ValueError("time1应当小于time2")
     return res
示例#31
0
 def test_fit_model(self):
     with self.assertRaises(RegressionException):
         self._data.fit_model(1, Data('ideal'), 'real')
     self.df = pd.DataFrame(
         [[1.5555555, 2.55555555], [4.5555555, 5.5555555]],
         columns=['x', 'y1'])
     self.df.to_csv('./tests/unittest.csv')
     self._data.csv_to_df()
     with self.assertRaises(Exception):
         self._data.fit_model(1, None, 'linear')
     # test print_table arg
     with open('./datasets/ideal.csv', 'r') as idf:
         ideal = Data('ideal', _create=False)
         ideal.csv_to_df()
         self.assertFalse(ideal.is_empty(), 'df obj should be populated')
         model = self._data.fit_model(1,
                                      ideal,
                                      'linear',
                                      print_table=True,
                                      table_name='./tests/unittest')
         self.assertEqual(type(model),
                          type(Model(self.df['x'], self.df['y1'], 1)))
         self.assertEqual(model.x[0], self.df['x'][0])
示例#32
0
class MainExecutor:

    def main_loop(self):
        def listen(ch, method, properties, body):
            self.datasql = Data(constants.PACKAGE_TABLE_NAME)
            self.rwriter = BuildLogWriter()
            print colored("[x] Received -- ", 'magenta') , body
            self.data = body
            self.parsed_data = json.loads(self.data)
            print self.parsed_data
            self.pack = self.datasql.find(self.parsed_data["id"])
            print "PACKAGE => ",self.pack
            self.file_name = str(self.datasql.find(self.parsed_data["id"],select="file_name")[0][0])
            self.lib_name = str(self.datasql.find(self.parsed_data["id"],select="lib_name")[0][0])
            dock = DockerExecutor(self.parsed_data)
            dock.create_container()
            dock.start_container()
            print dock.exec_command("mkdir testex")
            package_endpoint = constants.PACKAGE_ENDPT + str(self.file_name)
            print dock.exec_command('bash -c "cd testex && wget %s"' % str(package_endpoint))
            print dock.exec_command('bash -c "cd testex && tar -xvf %s"' % self.file_name)

            #Requirements Installation
            self.req_data = dock.exec_command('bash -c "cd / && cd testex && cd %s && pip install -r requirements.txt"' % self.lib_name)
            print self.req_data
            self.rwriter.write(self.lib_name, "requirements_installation.log", self.req_data)

            #Custom build commands
            self.build_commands = self.datasql.find(self.parsed_data["id"],select="commands")
            if(not(self.build_commands[0][0] == "")):
                print "BUILD COMMANDS => ", self.build_commands[0][0]
                commands = self.build_commands[0][0].split(",")
                for com in enumerate(commands):
                    self.req_data = dock.exec_command('bash -c "cd / && cd testex && cd %s && %s"' % (self.lib_name, com[1]))
                    print self.req_data
                    self.rwriter.write(self.lib_name,"custom_build_" + str(com[0]) + ".log", self.req_data)

            #Building from source
            self.build_data = dock.exec_command('bash -c "cd / && cd testex && cd %s && python setup.py install"' % self.lib_name)
            print self.build_data
            self.rwriter.write(self.lib_name, "build.log", self.build_data)

            #Stopping the container
            dock.stop_container()


        try:
            config = assets.Asset()
            credentials = config.get_rabbit_credentials()
            rabbit_credential = pika.credentials.PlainCredentials(credentials["user_name"],
                                                                       credentials["password"])
            connection = pika.BlockingConnection(pika.ConnectionParameters(
                    host=constants.PYHOLD_HOST,credentials=rabbit_credential))

            self.channel = connection.channel()
            self.channel.queue_declare(queue='pyhold_mq_stream')
            self.channel.basic_consume(listen,
                                  queue='pyhold_mq_stream',
                                  no_ack=True)
            od.oline()
            print ">> Starting Rabbit (AMQP) Listener.", "\t", colored("[SUCCESS]","green")
            print ">> Listening..."
            od.oline()
            self.channel.start_consuming()

        except:
            print colored("Error while binding/connecting to Rabbit Server / "
                          "Keyboard Interrupt.", "red")
            print colored("Please ensure that Rabbit Server is running", "red")
示例#33
0
    def run(self):
        # Settings instance
        s = Settings()
        # State of autopilot
        autopilot = False
        # Previous state of the autopilot button
        autopilot_button_prev = 0
        # Previous value of steering (gamepad)
        manual_steering_prev = 0

        img_wheel = cv2.imread('steering_wheel_image.jpg', 0)
        rows, cols = img_wheel.shape

        while AutopilotThread.running:
            pygame.event.pump()

            # Button to activate/deactivate autopilot
            autopilot_button_act = self.joystick.get_button(self.b_autopilot)
            # Button was pressed
            if autopilot_button_act != autopilot_button_prev and autopilot_button_act == 1:
                autopilot = not autopilot
                #if autopilot and settings.AUTOPILOT_SOUND_ACTIVATE:
                #    autopilot_engage.play()
            autopilot_button_prev = autopilot_button_act

            # Read the steering value of joystick
            axis = round(
                (self.joystick.get_axis(self.steering_axis) + 1) * 32768 / 2)
            # Interrupt autopilot if manual steering was detected
            if abs(manual_steering_prev - axis) > 500 and autopilot:
                img_id = Data().get_next_fileid()
                sequence_id = Data().add_sequence(country=Settings().get_value(
                    Settings.COUNTRY_DEFAULT),
                                                  note="correction")
                self.controller_thread.set_autopilot(False)
                self.statusbar.showMessage("Autopilot inactive")

                # TODO: Deactivate this feature in settings
                # TODO: Amount of images to save in settings
                # Save the next 3 images
                for i in range(3):
                    # Get frame of game
                    frame_raw = ImageGrab.grab(
                        bbox=functions.get_screen_bbox())
                    frame = np.uint8(frame_raw)
                    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

                    # Relevant image region for steering angle prediction
                    main = frame[
                        s.get_value(Settings.IMAGE_FRONT_BORDER_TOP):s.
                        get_value(Settings.IMAGE_FRONT_BORDER_BOTTOM),
                        s.get_value(Settings.IMAGE_FRONT_BORDER_LEFT):s.
                        get_value(Settings.IMAGE_FRONT_BORDER_RIGHT)]

                    # Resize image to save some space (height = 100px)
                    ratio = main.shape[1] / main.shape[0]
                    resized = cv2.resize(main, (round(ratio * 100), 100))

                    axis = self.joystick.get_axis(
                        s.get_value(Settings.STEERING_AXIS)) * 180

                    cv2.imwrite("captured/%d.png" % img_id, resized)
                    Data().add_image("%d.png" % img_id, axis, 0, 0, 0,
                                     sequence_id)
                    img_id += 1

                    time.sleep(0.150)
                autopilot = False
            manual_steering_prev = axis

            self.controller_thread.set_autopilot(autopilot)

            # Get frame of game
            frame_raw = ImageGrab.grab(bbox=functions.get_screen_bbox())
            frame = np.uint8(frame_raw)
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

            # Relevant image region for steering angle prediction
            main = frame[s.get_value(Settings.IMAGE_FRONT_BORDER_TOP):s.
                         get_value(Settings.IMAGE_FRONT_BORDER_BOTTOM),
                         s.get_value(Settings.IMAGE_FRONT_BORDER_LEFT):s.
                         get_value(Settings.IMAGE_FRONT_BORDER_RIGHT)]
            # Resize the image to the size of the neural network input layer
            image = scipy.misc.imresize(main, [66, 200]) / 255.0
            # Let the neural network predict the new steering angle
            y_eval = model.y.eval(session=self.sess,
                                  feed_dict={
                                      model.x: [image],
                                      model.keep_prob: 1.0
                                  })[0][0]
            degrees = y_eval * 180 / scipy.pi
            steering = int(round((degrees + 180) / 180 * 32768 /
                                 2))  # Value for vjoy controller

            # Set the value of the vjoy joystick to the predicted steering angle
            if autopilot:
                self.controller_thread.set_angle(steering)
                self.statusbar.showMessage("Autopilot active")
            else:
                self.statusbar.showMessage("Autopilot inactive")

            # TODO: Show steering wheel in GUI
            M = cv2.getRotationMatrix2D((cols / 2, rows / 2), -degrees, 1)
            dst = cv2.warpAffine(img_wheel, M, (cols, rows))
            # functions.set_image(dst.copy(), self.steering_wheel)

            functions.set_image(main.copy(), self.image_front)
        self.controller_thread.set_autopilot(False)
示例#34
0
class DatabaseTest(unittest.TestCase):
    engine = create_engine("sqlite:///python_models.db", echo=True)
    meta = MetaData()

    def setUp(self):
        self.df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
                               columns=['a', 'b', 'c'])
        self._data = Data("unittest")
        self._data.add_test_table('unittest')

    def test_csv_to_df(self):
        self.df.to_csv('./tests/unittest.csv')
        self._data.csv_to_df()
        self.assertEqual(type(pd.DataFrame()), type(self._data.df))

    def test_csv_to_db(self):
        self.assertTrue(self._data.csv_to_db())

    def test_fit_model(self):
        with self.assertRaises(RegressionException):
            self._data.fit_model(1, Data('ideal'), 'real')
        self.df = pd.DataFrame(
            [[1.5555555, 2.55555555], [4.5555555, 5.5555555]],
            columns=['x', 'y1'])
        self.df.to_csv('./tests/unittest.csv')
        self._data.csv_to_df()
        with self.assertRaises(Exception):
            self._data.fit_model(1, None, 'linear')
        # test print_table arg
        with open('./datasets/ideal.csv', 'r') as idf:
            ideal = Data('ideal', _create=False)
            ideal.csv_to_df()
            self.assertFalse(ideal.is_empty(), 'df obj should be populated')
            model = self._data.fit_model(1,
                                         ideal,
                                         'linear',
                                         print_table=True,
                                         table_name='./tests/unittest')
            self.assertEqual(type(model),
                             type(Model(self.df['x'], self.df['y1'], 1)))
            self.assertEqual(model.x[0], self.df['x'][0])

    def tearDown(self):
        try:
            self._data.drop_test_table()
        except AttributeError:
            print('table not dropped')
示例#35
0
 def setUp(self):
     self.df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
                            columns=['a', 'b', 'c'])
     self._data = Data("unittest")
     self._data.add_test_table('unittest')