示例#1
0
def resize_all_images(size):
    imageids = imagesHandler.get_all_img_ids_string()
    for img_id in imageids:
        img = imagesHandler.get_image(img_id)
        url = imagesHandler.get_full_url(img_id)
        filename = url.split(dirm.rootDirectory)[1]
        imgr = cv2.resize(img, (size, size))
        cv2.imwrite(dirm.rootDirectory + "/small/" + filename, imgr)
def resize_all_images(size):
    imageids = imagesHandler.get_all_img_ids_string()
    for img_id in imageids:
        img = imagesHandler.get_image(img_id)
        url = imagesHandler.get_full_url(img_id)
        filename = url.split(dirm.rootDirectory)[1]
        imgr = cv2.resize(img, (size, size))
        cv2.imwrite(dirm.rootDirectory+"/small/"+ filename, imgr )
def plot_raw_TSNE(tsneValues, imageIDs, filename):
    print "Plotting " + filename
    filename = filename + "_raw"
    locations = [
    ]  #loc keeps track of where the images are being placed in the visualisation

    #Load Tsne Values
    x = np.array(tsneValues)

    #subtract the min of each column
    x = x - x.min(axis=0)
    #devide by the max of each column
    x = x / x.max(axis=0)

    #get filename
    fs = imageIDs
    N = len(fs)  #N = length(fs);

    # size of every individual image
    s = 250

    # size of final image
    S = 10004

    # the final images intitialised
    G = np.ones((S, S, 3))  # ,'uint8'
    G = G * 255

    for i in range(0, N):
        a = math.ceil(x[i, 0] * (S - s) + 1)
        b = math.ceil(x[i, 1] * (S - s) + 1)
        a = a - ((a - 1) % s) + 1
        b = b - ((b - 1) % s) + 1
        #print meta,b
        imgid = fs[i].rstrip('\n')
        if i % 100 == 0:
            print i, "/", len(fs)
        if i == N:
            print i, "/", len(fs)
        img = imagesHandler.get_image(imgid)
        #CROPING
        #img_crop = util.cropImage(img,100,100)
        imgr = cv2.resize(img, (s, s))
        c = a + s
        #print c
        d = b + s
        G[a:c, b:d, :] = imgr
        loc = [imgid, a, c, b, d]
        locations.append(loc)

    print "Saving Image:" + dirm.outputDirectory + filename + ".jpg"
    cv2.imwrite(dirm.outputDirectory + filename + ".jpg", G)
    print "Image Saved"
    tsneHandler.storeLoc(filename, locations)
    return G
def plot_raw_TSNE(tsneValues, imageIDs, filename):
    print "Plotting " + filename
    filename = filename + "_raw"
    locations = []  # loc keeps track of where the images are being placed in the visualisation

    # Load Tsne Values
    x = np.array(tsneValues)

    # subtract the min of each column
    x = x - x.min(axis=0)
    # devide by the max of each column
    x = x / x.max(axis=0)

    # get filename
    fs = imageIDs
    N = len(fs)  # N = length(fs);

    # size of every individual image
    s = 250

    # size of final image
    S = 10004

    # the final images intitialised
    G = np.ones((S, S, 3))  # ,'uint8'
    G = G * 255

    for i in range(0, N):
        a = math.ceil(x[i, 0] * (S - s) + 1)
        b = math.ceil(x[i, 1] * (S - s) + 1)
        a = a - ((a - 1) % s) + 1
        b = b - ((b - 1) % s) + 1
        # print meta,b
        imgid = fs[i].rstrip("\n")
        if i % 100 == 0:
            print i, "/", len(fs)
        if i == N:
            print i, "/", len(fs)
        img = imagesHandler.get_image(imgid)
        # CROPING
        # img_crop = util.cropImage(img,100,100)
        imgr = cv2.resize(img, (s, s))
        c = a + s
        # print c
        d = b + s
        G[a:c, b:d, :] = imgr
        loc = [imgid, a, c, b, d]
        locations.append(loc)

    print "Saving Image:" + dirm.outputDirectory + filename + ".jpg"
    cv2.imwrite(dirm.outputDirectory + filename + ".jpg", G)
    print "Image Saved"
    tsneHandler.storeLoc(filename, locations)
    return G