def test_to_graph_should_return_catalog_without_datasets_as_graph() -> None:
    """It returns a catalog graph isomorphic to spec."""
    catalog = Catalog()
    catalog.identifier = "http://example.com/catalogs/1"

    dataset1 = Dataset()
    dataset1.identifier = "http://example.com/datasets/1"
    dataset1.title = {"nb": "Datasett 1", "en": "Dataset 1"}
    catalog.datasets.append(dataset1)

    dataset2 = Dataset()
    dataset2.identifier = "http://example.com/datasets/2"
    dataset2.title = {"nb": "Datasett 2", "en": "Dataset 2"}
    catalog.datasets.append(dataset2)

    src = """
    @prefix dct: <http://purl.org/dc/terms/> .
    @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
    @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
    @prefix dcat: <http://www.w3.org/ns/dcat#> .

    <http://example.com/catalogs/1> a dcat:Catalog ;
        dcat:dataset    <http://example.com/datasets/1> ,
                        <http://example.com/datasets/2> ;
    .
    """
    g1 = Graph().parse(data=catalog.to_rdf(include_datasets=False),
                       format="turtle")
    g2 = Graph().parse(data=src, format="turtle")

    _isomorphic = isomorphic(g1, g2)
    if not _isomorphic:
        _dump_diff(g1, g2)
        pass
    assert _isomorphic
def test_to_graph_should_return_dataset_skolemization(
        mocker: MockFixture) -> None:
    """It returns a dataset graph isomorphic to spec."""
    catalog = Catalog()
    catalog.identifier = "http://example.com/catalogs/1"

    dataset1 = Dataset()
    dataset1.title = {"nb": "Datasett 1", "en": "Dataset 1"}
    catalog.datasets.append(dataset1)

    dataset2 = Dataset()
    dataset2.title = {"nb": "Datasett 2", "en": "Dataset 2"}
    catalog.datasets.append(dataset2)

    src = """
    @prefix dct: <http://purl.org/dc/terms/> .
    @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
    @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
    @prefix dcat: <http://www.w3.org/ns/dcat#> .

    <http://example.com/catalogs/1> a dcat:Catalog ;
        dcat:dataset
            <http://wwww.digdir.no/.well-known/skolem/21043186-80ce-11eb-9829-cf7c8fc855ce> ,
            <http://wwww.digdir.no/.well-known/skolem/284db4d2-80c2-11eb-82c3-83e80baa2f94> ;
    .
    <http://wwww.digdir.no/.well-known/skolem/284db4d2-80c2-11eb-82c3-83e80baa2f94>
     a dcat:Dataset ;
        dct:title   "Dataset 1"@en, "Datasett 1"@nb ;
    .
    <http://wwww.digdir.no/.well-known/skolem/21043186-80ce-11eb-9829-cf7c8fc855ce>
     a dcat:Dataset ;
        dct:title   "Dataset 2"@en, "Datasett 2"@nb ;
    .

    """

    skolemutils = SkolemUtils()

    mocker.patch(
        "skolemizer.Skolemizer.add_skolemization",
        side_effect=skolemutils.get_skolemization,
    )

    g1 = Graph().parse(data=catalog.to_rdf(), format="turtle")
    g2 = Graph().parse(data=src, format="turtle")

    _isomorphic = isomorphic(g1, g2)
    if not _isomorphic:
        _dump_diff(g1, g2)
        pass
    assert _isomorphic
def _add_mandatory_dataset_props(dataset: Dataset, es_hit: Mapping) -> None:
    dataset.title = {"nb": utils.remove_new_line(es_hit["title"])}
    dataset.identifier = URI(os.environ["DATASET_CONCEPT_IDENTIFIER"] +
                             es_hit["id"])
    dataset.description = {"nb": es_hit["description"]}
    dataset.publisher = URI(os.environ["PUBLISHER"])
    dataset.language = utils.create_language(es_hit["language"])
    dataset.access_rights = utils.create_access_rights(es_hit["accessRights"])
    dataset.spatial_coverage = utils.create_location(es_hit["spatial"])
def test_to_graph_should_return_title() -> None:
    """It returns a title graph isomorphic to spec."""
    resource = Dataset()
    resource.identifier = "http://example.com/datasets/1"
    resource.title = {"nb": "Tittel 1", "en": "Title 1"}

    src = """
    @prefix dct: <http://purl.org/dc/terms/> .
    @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
    @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
    @prefix dcat: <http://www.w3.org/ns/dcat#> .

    <http://example.com/datasets/1> a dcat:Dataset ;
        dct:title   "Title 1"@en, "Tittel 1"@nb ;
        .
    """
    g1 = Graph().parse(data=resource.to_rdf(), format="turtle")
    g2 = Graph().parse(data=src, format="turtle")

    _isomorphic = isomorphic(g1, g2)
    if not _isomorphic:
        _dump_diff(g1, g2)
        pass
    assert _isomorphic
示例#5
0
from datacatalogtordf import Catalog, Dataset

# Create catalog object
catalog = Catalog()
catalog.identifier = "http://example.com/catalogs/1"
catalog.title = {"en": "A dataset catalog"}
catalog.publisher = "https://example.com/publishers/1"

# Create a dataset:
dataset = Dataset()
dataset.identifier = "http://example.com/datasets/1"
dataset.title = {"nb": "inntektsAPI", "en": "incomeAPI"}
#
# Add concept to catalog:
catalog.datasets.append(dataset)

# get rdf representation in turtle (default)
rdf = catalog.to_rdf()
print(rdf.decode())
示例#6
0
def main(req: func.HttpRequest, msg: func.Out[str]) -> func.HttpResponse:
    logging.info('Python HTTP trigger function processed a request.')

    search = req.params.get('search')
    if not search:
        try:
            req_body = req.get_json()
        except ValueError:
            pass
        else:
            search = req_body.get('search')

    assetType = req.params.get('assetType')
    if not assetType:
        try:
            req_body = req.get_json()
        except ValueError:
            pass
        else:
            search = req_body.get('assetType')

    entityType = req.params.get('entityType')
    if not entityType:
        try:
            req_body = req.get_json()
        except ValueError:
            pass
        else:
            search = req_body.get('entityType')

    if search:
        
        logging.info(search)
        logging.info(assetType)
        logging.info(entityType)

        # search purview
        value = entitySearch(search)

        if int(json.loads(value)['@search.count']) > 0:
            logging.info(json.loads(value)['@search.count'])
        else:
            logging.info("Nothing was returned from the search")
            return func.HttpResponse(
             "This HTTP triggered function executed successfully, but no search criteria was returned from the Purview catalog. Pass a search in the query string or in the request body for a response.",
             status_code=200
        )

        #parse the response
        objToexport = []
        score = 0
        #loop through all of the results and filter on the assetType and entityType
        
        jsonObj = json.loads(value)
        
        for obj in jsonObj['value'] :
            if (obj['assetType'][0] == assetType) and (obj['entityType'] == entityType):       
                #if there are multiple objects returned, select the one with the highest score
                if (obj['@search.score'] > score):
                    objToexport = obj
                    score = obj['@search.score']

        # return function if not match has been found in the data returned from Purview
        if(len(objToexport) == 0):
            logging.info("No match was found in the Purview catalog for the search, assetType and entityType combination entityType: {0} {1} {2} ".format(search, assetType, entityType))
            return func.HttpResponse(
             f"No match was found in the Purview catalog for search : {search}  assetType: {assetType} entityType: {entityType} ",
             status_code=200
        )

        publisher = os.environ.get('publisher')
        logging.info(objToexport['assetType'])
        logging.info(objToexport['entityType']) 
        logging.info(objToexport['@search.score'])
        logging.info(objToexport['qualifiedName'])
        logging.info(objToexport['name'])
        logging.info(publisher)
        logging.info(score)

        # Create catalog object
        catalog = Catalog()
        catalog.identifier = objToexport['qualifiedName']
        catalog.title = {"en": objToexport['name']}
        catalog.publisher = publisher

        # Create a dataset:
        dataset = Dataset()
        dataset.identifier = objToexport['qualifiedName']
        dataset.title = {"nb": objToexport['name'], "en": objToexport['name']}
        #
        # Add dataset to catalog:
        catalog.datasets.append(dataset)

        # get rdf representation in turtle (default)
        rdf = catalog.to_rdf()
        logging.info(rdf.decode())


        # write the rdf to Azure storage
        msg.set(rdf.decode())

        # return the function 
        return func.HttpResponse(f"The HTTP triggered function for {search} executed successfully. The assetType provided was: {assetType} and the entityType was: {entityType }")

    else:
        return func.HttpResponse(
             "This HTTP triggered function executed successfully, but no search criteria was supplied. Pass a search in the query string or in the request body for a response.",
             status_code=200
        )