示例#1
0
文件: process.py 项目: PVirie/zodiac
    def setup(self, index):
        self.index = index
        if len(weight_sets) <= self.index:
            return False
        s = weight_sets[self.index]["size"]
        self.size = (s[0], s[1])
        self.num_layers = weight_sets[self.index]["num_layers"]
        self.session_name = "weight_sets/" + weight_sets[self.index]["session_name"]

        self.formatter = dataformat.DataFormat(self.size[0])

        self.close_down()

        print(self.session_name)
        num_intra_class = 10
        num_inter_class = 20
        self.comparator = momentnet.Comparator((2, self.size[0]), self.size[1], num_intra_class=num_intra_class, num_inter_class=num_inter_class, layers=self.num_layers)

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        self.running = True
        self.sess = tf.Session(config=config)
        self.sess.run(tf.global_variables_initializer())
        self.comparator.load_session(self.sess, self.session_name)
        return True
示例#2
0
                       "weight_sets", weight_set_name)
    if not os.path.exists(pwd):
        print("cannot find a trained weight set.")
        exit()
    set_path = os.path.join(pwd, "set.json")
    with open(set_path, "r") as file:
        set_data = json.load(file)

    s = set_data["size"]
    input_size = (s[0], s[1])
    num_layers = set_data["num_layers"]

    session_name = "weight_sets/" + set_data["session_name"]
    print(session_name, pwd)

    formatter = dataformat.DataFormat(input_size[0])

    data, labels = dataformat.read_data_directory(formatter, from_date,
                                                  to_date, set_list)
    # data = random_flip(data)
    print("testset shapes: ", data.shape, labels.shape)

    if args.template is not None:
        template_path = os.path.join("templates", args.template)
    else:
        template_path = os.path.join("templates", "default")

    templates, template_labels = dataformat.read_template_directory(
        formatter, template_path, with_flip=False)
    print("template shapes: ", templates.shape, template_labels.shape)
示例#3
0
import numpy as np
import cv2
import matplotlib.pyplot as plt
from matplotlib import offsetbox
from sklearn import (manifold, datasets, decomposition, ensemble,
                     discriminant_analysis, random_projection)

import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
import dataformat
import momentnet
import tensorflow as tf

template_dir = "neo_large"
formatter = dataformat.DataFormat(256)
templates, template_labels, raws = dataformat.read_template_directory(
    formatter,
    os.path.join("templates", template_dir),
    with_flip=True,
    return_raw=True)
print(templates.shape)
X = np.reshape(templates, [templates.shape[0], -1])

perform_embedding = True
if perform_embedding:
    comparator = momentnet.Comparator((2, 256),
                                      32,
                                      num_intra_class=10,
                                      num_inter_class=20,
                                      layers=5,