示例#1
0
def df():
    ctx = ExecutionContext()

    # create a RecordBatch and a new DataFrame from it
    batch = pa.RecordBatch.from_arrays(
        [pa.array([1, 2, 3]), pa.array([4, 4, 6])],
        names=["a", "b"],
    )
    return ctx.create_dataframe([[batch]])
示例#2
0
    def do_connect(
        self,
        config: Mapping[str, str | Path] | SessionContext,
    ) -> None:
        """Create a Datafusion backend for use with Ibis.

        Parameters
        ----------
        config
            Mapping of table names to files.

        Examples
        --------
        >>> import ibis
        >>> config = {"t": "path/to/file.parquet", "s": "path/to/file.csv"}
        >>> ibis.datafusion.connect(config)
        """
        if isinstance(config, SessionContext):
            self._context = config
        else:
            self._context = SessionContext()

        for name, path in config.items():
            strpath = str(path)
            if strpath.endswith('.csv'):
                self.register_csv(name, path)
            elif strpath.endswith('.parquet'):
                self.register_parquet(name, path)
            else:
                raise ValueError(
                    "Currently the DataFusion backend only supports CSV "
                    "files with the extension .csv and Parquet files with "
                    "the .parquet extension.")
示例#3
0
def test_join():
    ctx = ExecutionContext()

    batch = pa.RecordBatch.from_arrays(
        [pa.array([1, 2, 3]), pa.array([4, 5, 6])],
        names=["a", "b"],
    )
    df = ctx.create_dataframe([[batch]])

    batch = pa.RecordBatch.from_arrays(
        [pa.array([1, 2]), pa.array([8, 10])],
        names=["a", "c"],
    )
    df1 = ctx.create_dataframe([[batch]])

    df = df.join(df1, join_keys=(["a"], ["a"]), how="inner")
    df = df.sort([f.col("a").sort(ascending=True)])
    table = pa.Table.from_batches(df.collect())

    expected = {"a": [1, 2], "c": [8, 10], "b": [4, 5]}
    assert table.to_pydict() == expected
示例#4
0
def df():
    ctx = ExecutionContext()
    # create a RecordBatch and a new DataFrame from it
    batch = pa.RecordBatch.from_arrays([pa.array([0.1, -0.7, 0.55])],
                                       names=["value"])
    return ctx.create_dataframe([[batch]])
示例#5
0
def ctx():
    return ExecutionContext()
示例#6
0
class Backend(BaseBackend):
    name = 'datafusion'
    builder = None

    @property
    def version(self):
        try:
            import importlib.metadata as importlib_metadata
        except ImportError:
            # TODO: remove this when Python 3.9 support is dropped
            import importlib_metadata
        return importlib_metadata.version("datafusion")

    def do_connect(
        self,
        config: Mapping[str, str | Path] | SessionContext,
    ) -> None:
        """Create a Datafusion backend for use with Ibis.

        Parameters
        ----------
        config
            Mapping of table names to files.

        Examples
        --------
        >>> import ibis
        >>> config = {"t": "path/to/file.parquet", "s": "path/to/file.csv"}
        >>> ibis.datafusion.connect(config)
        """
        if isinstance(config, SessionContext):
            self._context = config
        else:
            self._context = SessionContext()

        for name, path in config.items():
            strpath = str(path)
            if strpath.endswith('.csv'):
                self.register_csv(name, path)
            elif strpath.endswith('.parquet'):
                self.register_parquet(name, path)
            else:
                raise ValueError(
                    "Currently the DataFusion backend only supports CSV "
                    "files with the extension .csv and Parquet files with "
                    "the .parquet extension.")

    def current_database(self) -> str:
        raise NotImplementedError()

    def list_databases(self, like: str | None = None) -> list[str]:
        raise NotImplementedError()

    def list_tables(
        self,
        like: str | None = None,
        database: str | None = None,
    ) -> list[str]:
        """List the available tables."""
        tables = list(self._context.tables())
        if like is not None:
            pattern = re.compile(like)
            return list(filter(lambda t: pattern.findall(t), tables))
        return tables

    def table(
        self,
        name: str,
        schema: sch.Schema | None = None,
    ) -> ir.Table:
        """Get an ibis expression representing a DataFusion table.

        Parameters
        ----------
        name
            The name of the table to retreive
        schema
            An optional schema for the table

        Returns
        -------
        Table
            A table expression
        """
        catalog = self._context.catalog()
        database = catalog.database('public')
        table = database.table(name)
        schema = sch.infer(table.schema)
        return self.table_class(name, schema, self).to_expr()

    def register_csv(
        self,
        name: str,
        path: str | Path,
        schema: sch.Schema | None = None,
    ) -> None:
        """Register a CSV file with with `name` located at `path`.

        Parameters
        ----------
        name
            The name of the table
        path
            The path to the CSV file
        schema
            An optional schema
        """
        self._context.register_csv(name, str(path), schema=schema)

    def register_parquet(
        self,
        name: str,
        path: str | Path,
    ) -> None:
        """Register a parquet file with with `name` located at `path`.

        Parameters
        ----------
        name
            The name of the table
        path
            The path to the Parquet file
        """
        self._context.register_parquet(name, str(path))

    def execute(
        self,
        expr: ir.Expr,
        params: Mapping[ir.Expr, object] = None,
        limit: str = 'default',
        **kwargs: Any,
    ):
        if isinstance(expr, ir.Table):
            frame = self.compile(expr, params, **kwargs)
            table = _to_pyarrow_table(frame)
            return table.to_pandas()
        elif isinstance(expr, ir.Column):
            # expression must be named for the projection
            expr = expr.name('tmp').to_projection()
            frame = self.compile(expr, params, **kwargs)
            table = _to_pyarrow_table(frame)
            return table['tmp'].to_pandas()
        elif isinstance(expr, ir.Scalar):
            if expr.op().root_tables():
                # there are associated datafusion tables so convert the expr
                # to a selection which we can directly convert to a datafusion
                # plan
                expr = expr.name('tmp').to_projection()
                frame = self.compile(expr, params, **kwargs)
            else:
                # doesn't have any tables associated so create a plan from a
                # dummy datafusion table
                compiled = self.compile(expr, params, **kwargs)
                frame = self._context.empty_table().select(compiled)
            table = _to_pyarrow_table(frame)
            return table[0][0].as_py()
        else:
            raise com.IbisError(
                f"Cannot execute expression of type: {type(expr)}")

    def compile(
        self,
        expr: ir.Expr,
        params: Mapping[ir.Expr, object] = None,
        **kwargs: Any,
    ):
        return translate(expr)

    @classmethod
    @lru_cache
    def _get_operations(cls):
        from ibis.backends.datafusion.compiler import translate

        return frozenset(op for op in translate.registry
                         if issubclass(op, ops.Value))

    @classmethod
    def has_operation(cls, operation: type[ops.Value]) -> bool:
        op_classes = cls._get_operations()
        return operation in op_classes or any(
            issubclass(operation, op_impl) for op_impl in op_classes)