示例#1
0
    def construct_flow_workunit(
            self, connector: ConnectorManifest) -> Iterable[MetadataWorkUnit]:
        connector_name = connector.name
        connector_type = connector.type
        connector_class = connector.config.get("connector.class")
        flow_property_bag = connector.flow_property_bag
        # connector_url = connector.url  # NOTE: this will expose connector credential when used
        flow_urn = builder.make_data_flow_urn("kafka-connect", connector_name,
                                              self.config.env)

        mcp = MetadataChangeProposalWrapper(
            entityType="dataFlow",
            entityUrn=flow_urn,
            changeType=models.ChangeTypeClass.UPSERT,
            aspectName="dataFlowInfo",
            aspect=models.DataFlowInfoClass(
                name=connector_name,
                description=
                f"{connector_type.capitalize()} connector using `{connector_class}` plugin.",
                customProperties=flow_property_bag,
                # externalUrl=connector_url, # NOTE: this will expose connector credential when used
            ),
        )

        for proposal in [mcp]:
            wu = MetadataWorkUnit(
                id=f"kafka-connect.{connector_name}.{proposal.aspectName}",
                mcp=proposal)
            self.report.report_workunit(wu)
            yield wu
示例#2
0
    def construct_flow_workunit(
        self, connector: ConnectorManifest
    ) -> Iterable[MetadataWorkUnit]:
        connector_name = connector.name
        connector_type = connector.type
        connector_class = connector.config.get("connector.class")
        # connector_url = connector.url  # NOTE: this will expose connector credential when used
        flow_urn = builder.make_data_flow_urn(
            "kafka-connect", connector_name, self.config.env
        )
        flow_property_bag: Optional[Dict[str, str]] = None
        mce = models.MetadataChangeEventClass(
            proposedSnapshot=models.DataFlowSnapshotClass(
                urn=flow_urn,
                aspects=[
                    models.DataFlowInfoClass(
                        name=connector_name,
                        description=f"{connector_type.capitalize()} connector using `{connector_class}` plugin.",
                        customProperties=flow_property_bag,
                        # externalUrl=connector_url, # NOTE: this will expose connector credential when used
                    ),
                    # ownership,
                    # tags,
                ],
            )
        )

        for c in [connector_name]:
            wu = MetadataWorkUnit(id=c, mce=mce)
            self.report.report_workunit(wu)
            yield wu
示例#3
0
def test_type_error() -> None:
    dataflow = models.DataFlowSnapshotClass(
        urn=mce_builder.make_data_flow_urn(orchestrator="argo",
                                           flow_id="42",
                                           cluster="DEV"),
        aspects=[
            models.DataFlowInfoClass(
                name="hello_datahub",
                description="Hello Datahub",
                externalUrl="http://example.com",
                # This is a type error - custom properties should be a Dict[str, str].
                customProperties={"x": 1},  # type: ignore
            )
        ],
    )

    with pytest.raises(avrojson.AvroTypeException):
        dataflow.to_obj()
示例#4
0
def send_lineage_to_datahub(
    config: DatahubBasicLineageConfig,
    operator: "BaseOperator",
    inlets: List[_Entity],
    outlets: List[_Entity],
    context: Dict,
) -> None:
    # This is necessary to avoid issues with circular imports.
    from airflow.serialization.serialized_objects import (
        SerializedBaseOperator,
        SerializedDAG,
    )

    dag: "DAG" = context["dag"]
    task: "BaseOperator" = context["task"]

    # resolve URNs for upstream nodes in subdags upstream of the current task.
    upstream_subdag_task_urns: List[str] = []

    for upstream_task_id in task.upstream_task_ids:
        upstream_task = dag.task_dict[upstream_task_id]

        # if upstream task is not a subdag, then skip it
        if upstream_task.subdag is None:
            continue

        # else, link the leaf tasks of the upstream subdag as upstream tasks
        upstream_subdag = upstream_task.subdag

        upstream_subdag_flow_urn = builder.make_data_flow_urn(
            "airflow", upstream_subdag.dag_id, config.cluster)

        for upstream_subdag_task_id in upstream_subdag.task_dict:
            upstream_subdag_task = upstream_subdag.task_dict[
                upstream_subdag_task_id]

            upstream_subdag_task_urn = builder.make_data_job_urn_with_flow(
                upstream_subdag_flow_urn, upstream_subdag_task_id)

            # if subdag task is a leaf task, then link it as an upstream task
            if len(upstream_subdag_task._downstream_task_ids) == 0:

                upstream_subdag_task_urns.append(upstream_subdag_task_urn)

    # resolve URNs for upstream nodes that trigger the subdag containing the current task.
    # (if it is in a subdag at all)
    upstream_subdag_triggers: List[str] = []

    # subdags are always named with 'parent.child' style or Airflow won't run them
    # add connection from subdag trigger(s) if subdag task has no upstreams
    if (dag.is_subdag and dag.parent_dag is not None
            and len(task._upstream_task_ids) == 0):

        # filter through the parent dag's tasks and find the subdag trigger(s)
        subdags = [
            x for x in dag.parent_dag.task_dict.values()
            if x.subdag is not None
        ]
        matched_subdags = [
            x for x in subdags
            if getattr(getattr(x, "subdag"), "dag_id") == dag.dag_id
        ]

        # id of the task containing the subdag
        subdag_task_id = matched_subdags[0].task_id

        parent_dag_urn = builder.make_data_flow_urn("airflow",
                                                    dag.parent_dag.dag_id,
                                                    config.cluster)

        # iterate through the parent dag's tasks and find the ones that trigger the subdag
        for upstream_task_id in dag.parent_dag.task_dict:
            upstream_task = dag.parent_dag.task_dict[upstream_task_id]

            upstream_task_urn = builder.make_data_job_urn_with_flow(
                parent_dag_urn, upstream_task_id)

            # if the task triggers the subdag, link it to this node in the subdag
            if subdag_task_id in upstream_task._downstream_task_ids:
                upstream_subdag_triggers.append(upstream_task_urn)

    # TODO: capture context
    # context dag_run
    # task_instance: "TaskInstance" = context["task_instance"]
    # TODO: capture raw sql from db operators

    flow_urn = builder.make_data_flow_urn("airflow", dag.dag_id,
                                          config.cluster)
    job_urn = builder.make_data_job_urn_with_flow(flow_urn, task.task_id)

    base_url = conf.get("webserver", "base_url")
    flow_url = f"{base_url}/tree?dag_id={dag.dag_id}"
    job_url = f"{base_url}/taskinstance/list/?flt1_dag_id_equals={dag.dag_id}&_flt_3_task_id={task.task_id}"
    # operator.log.info(f"{flow_url=}")
    # operator.log.info(f"{job_url=}")
    # operator.log.info(f"{dag.get_serialized_fields()=}")
    # operator.log.info(f"{task.get_serialized_fields()=}")
    # operator.log.info(f"{SerializedDAG.serialize_dag(dag)=}")

    flow_property_bag: Dict[str, str] = {
        key: repr(value)
        for (key, value) in SerializedDAG.serialize_dag(dag).items()
    }
    for key in dag.get_serialized_fields():
        if key not in flow_property_bag:
            flow_property_bag[key] = repr(getattr(dag, key))
    job_property_bag: Dict[str, str] = {
        key: repr(value)
        for (key,
             value) in SerializedBaseOperator.serialize_operator(task).items()
    }
    for key in task.get_serialized_fields():
        if key not in job_property_bag:
            job_property_bag[key] = repr(getattr(task, key))
    # operator.log.info(f"{flow_property_bag=}")
    # operator.log.info(f"{job_property_bag=}")
    allowed_task_keys = [
        "_downstream_task_ids",
        "_inlets",
        "_outlets",
        "_task_type",
        "_task_module",
        "depends_on_past",
        "email",
        "label",
        "execution_timeout",
        "end_date",
        "start_date",
        "sla",
        "sql",
        "task_id",
        "trigger_rule",
        "wait_for_downstream",
    ]
    job_property_bag = {
        k: v
        for (k, v) in job_property_bag.items() if k in allowed_task_keys
    }
    allowed_flow_keys = [
        "_access_control",
        "_concurrency",
        "_default_view",
        "catchup",
        "fileloc",
        "is_paused_upon_creation",
        "start_date",
        "tags",
        "timezone",
    ]
    flow_property_bag = {
        k: v
        for (k, v) in flow_property_bag.items() if k in allowed_flow_keys
    }

    if config.capture_ownership_info:
        ownership = models.OwnershipClass(
            owners=[
                models.OwnerClass(
                    owner=builder.make_user_urn(dag.owner),
                    type=models.OwnershipTypeClass.DEVELOPER,
                    source=models.OwnershipSourceClass(
                        type=models.OwnershipSourceTypeClass.SERVICE,
                        url=dag.filepath,
                    ),
                )
            ],
            lastModified=models.AuditStampClass(
                time=0, actor=builder.make_user_urn("airflow")),
        )
        # operator.log.info(f"{ownership=}")
        ownership_aspect = [ownership]
    else:
        ownership_aspect = []

    if config.capture_tags_info:
        tags = models.GlobalTagsClass(tags=[
            models.TagAssociationClass(tag=builder.make_tag_urn(tag))
            for tag in (dag.tags or [])
        ])
        # operator.log.info(f"{tags=}")
        tags_aspect = [tags]
    else:
        tags_aspect = []

    flow_mce = models.MetadataChangeEventClass(
        proposedSnapshot=models.DataFlowSnapshotClass(
            urn=flow_urn,
            aspects=[
                models.DataFlowInfoClass(
                    name=dag.dag_id,
                    description=f"{dag.description}\n\n{dag.doc_md or ''}",
                    customProperties=flow_property_bag,
                    externalUrl=flow_url,
                ),
                *ownership_aspect,
                *tags_aspect,
            ],
        ))

    # exclude subdag operator tasks since these are not emitted, resulting in empty metadata
    upstream_tasks = ([
        builder.make_data_job_urn_with_flow(flow_urn, task_id)
        for task_id in task.upstream_task_ids
        if dag.task_dict[task_id].subdag is None
    ] + upstream_subdag_task_urns + upstream_subdag_triggers)

    job_doc = ((operator.doc or operator.doc_md or operator.doc_json
                or operator.doc_yaml or operator.doc_rst)
               if not AIRFLOW_1 else None)

    job_mce = models.MetadataChangeEventClass(
        proposedSnapshot=models.DataJobSnapshotClass(
            urn=job_urn,
            aspects=[
                models.DataJobInfoClass(
                    name=task.task_id,
                    type=models.AzkabanJobTypeClass.COMMAND,
                    description=job_doc,
                    customProperties=job_property_bag,
                    externalUrl=job_url,
                ),
                models.DataJobInputOutputClass(
                    inputDatasets=_entities_to_urn_list(inlets or []),
                    outputDatasets=_entities_to_urn_list(outlets or []),
                    inputDatajobs=upstream_tasks,
                ),
                *ownership_aspect,
                *tags_aspect,
            ],
        ))

    force_entity_materialization = [
        models.MetadataChangeEventClass(
            proposedSnapshot=models.DatasetSnapshotClass(
                urn=iolet,
                aspects=[
                    models.StatusClass(removed=False),
                ],
            ))
        for iolet in _entities_to_urn_list((inlets or []) + (outlets or []))
    ]

    hook = config.make_emitter_hook()

    mces = [
        flow_mce,
        job_mce,
        *force_entity_materialization,
    ]
    operator.log.info("DataHub lineage backend - emitting metadata:\n" +
                      "\n".join(json.dumps(mce.to_obj()) for mce in mces))
    hook.emit_mces(mces)
示例#5
0
def send_lineage_to_datahub(
    config: DatahubBasicLineageConfig,
    operator: "BaseOperator",
    inlets: List[_Entity],
    outlets: List[_Entity],
    context: Dict,
) -> None:
    # This is necessary to avoid issues with circular imports.
    from airflow.serialization.serialized_objects import (
        SerializedBaseOperator,
        SerializedDAG,
    )

    dag: "DAG" = context["dag"]
    task: "BaseOperator" = context["task"]

    # TODO: capture context
    # context dag_run
    # task_instance: "TaskInstance" = context["task_instance"]
    # TODO: capture raw sql from db operators

    flow_urn = builder.make_data_flow_urn("airflow", dag.dag_id,
                                          config.cluster)
    job_urn = builder.make_data_job_urn_with_flow(flow_urn, task.task_id)

    base_url = conf.get("webserver", "base_url")
    flow_url = f"{base_url}/tree?dag_id={dag.dag_id}"
    job_url = f"{base_url}/taskinstance/list/?flt1_dag_id_equals={dag.dag_id}&_flt_3_task_id={task.task_id}"
    # operator.log.info(f"{flow_url=}")
    # operator.log.info(f"{job_url=}")
    # operator.log.info(f"{dag.get_serialized_fields()=}")
    # operator.log.info(f"{task.get_serialized_fields()=}")
    # operator.log.info(f"{SerializedDAG.serialize_dag(dag)=}")

    flow_property_bag: Dict[str, str] = {
        key: repr(value)
        for (key, value) in SerializedDAG.serialize_dag(dag).items()
    }
    for key in dag.get_serialized_fields():
        if key not in flow_property_bag:
            flow_property_bag[key] = repr(getattr(dag, key))
    job_property_bag: Dict[str, str] = {
        key: repr(value)
        for (key,
             value) in SerializedBaseOperator.serialize_operator(task).items()
    }
    for key in task.get_serialized_fields():
        if key not in job_property_bag:
            job_property_bag[key] = repr(getattr(task, key))
    # operator.log.info(f"{flow_property_bag=}")
    # operator.log.info(f"{job_property_bag=}")
    allowed_task_keys = [
        "_downstream_task_ids",
        "_inlets",
        "_outlets",
        "_task_type",
        "_task_module",
        "depends_on_past",
        "email",
        "label",
        "execution_timeout",
        "end_date",
        "start_date",
        "sla",
        "sql",
        "task_id",
        "trigger_rule",
        "wait_for_downstream",
    ]
    job_property_bag = {
        k: v
        for (k, v) in job_property_bag.items() if k in allowed_task_keys
    }
    allowed_flow_keys = [
        "_access_control",
        "_concurrency",
        "_default_view",
        "catchup",
        "fileloc",
        "is_paused_upon_creation",
        "start_date",
        "tags",
        "timezone",
    ]
    flow_property_bag = {
        k: v
        for (k, v) in flow_property_bag.items() if k in allowed_flow_keys
    }

    if config.capture_ownership_info:
        timestamp = int(
            dateutil.parser.parse(context["ts"]).timestamp() * 1000)
        ownership = models.OwnershipClass(
            owners=[
                models.OwnerClass(
                    owner=builder.make_user_urn(dag.owner),
                    type=models.OwnershipTypeClass.DEVELOPER,
                    source=models.OwnershipSourceClass(
                        type=models.OwnershipSourceTypeClass.SERVICE,
                        url=dag.filepath,
                    ),
                )
            ],
            lastModified=models.AuditStampClass(
                time=timestamp, actor=builder.make_user_urn("airflow")),
        )
        # operator.log.info(f"{ownership=}")
        ownership_aspect = [ownership]
    else:
        ownership_aspect = []

    if config.capture_tags_info:
        tags = models.GlobalTagsClass(tags=[
            models.TagAssociationClass(tag=builder.make_tag_urn(tag))
            for tag in (dag.tags or [])
        ])
        # operator.log.info(f"{tags=}")
        tags_aspect = [tags]
    else:
        tags_aspect = []

    flow_mce = models.MetadataChangeEventClass(
        proposedSnapshot=models.DataFlowSnapshotClass(
            urn=flow_urn,
            aspects=[
                models.DataFlowInfoClass(
                    name=dag.dag_id,
                    description=f"{dag.description}\n\n{dag.doc_md or ''}",
                    customProperties=flow_property_bag,
                    externalUrl=flow_url,
                ),
                *ownership_aspect,
                *tags_aspect,
            ],
        ))

    job_mce = models.MetadataChangeEventClass(
        proposedSnapshot=models.DataJobSnapshotClass(
            urn=job_urn,
            aspects=[
                models.DataJobInfoClass(
                    name=task.task_id,
                    type=models.AzkabanJobTypeClass.COMMAND,
                    description=None,
                    customProperties=job_property_bag,
                    externalUrl=job_url,
                ),
                models.DataJobInputOutputClass(
                    inputDatasets=_entities_to_urn_list(inlets or []),
                    outputDatasets=_entities_to_urn_list(outlets or []),
                    inputDatajobs=[
                        builder.make_data_job_urn_with_flow(flow_urn, task_id)
                        for task_id in task.upstream_task_ids
                    ],
                ),
                *ownership_aspect,
                *tags_aspect,
            ],
        ))

    force_entity_materialization = [
        models.MetadataChangeEventClass(
            proposedSnapshot=models.DatasetSnapshotClass(
                urn=iolet,
                aspects=[
                    models.StatusClass(removed=False),
                ],
            ))
        for iolet in _entities_to_urn_list((inlets or []) + (outlets or []))
    ]

    hook = config.make_emitter_hook()

    mces = [
        flow_mce,
        job_mce,
        *force_entity_materialization,
    ]
    operator.log.info("DataHub lineage backend - emitting metadata:\n" +
                      "\n".join(json.dumps(mce.to_obj()) for mce in mces))
    hook.emit_mces(mces)
示例#6
0
    def send_lineage(
        operator: "BaseOperator",
        inlets: Optional[List] = None,
        outlets: Optional[List] = None,
        context: Dict = None,
    ) -> None:
        # This is necessary to avoid issues with circular imports.
        from airflow.lineage import prepare_lineage
        from airflow.serialization.serialized_objects import (
            SerializedBaseOperator,
            SerializedDAG,
        )

        from datahub.integrations.airflow.hooks import AIRFLOW_1

        # Detect Airflow 1.10.x inlet/outlet configurations in Airflow 2.x, and
        # convert to the newer version. This code path will only be triggered
        # when 2.x receives a 1.10.x inlet/outlet config.
        needs_repeat_preparation = False
        if (not AIRFLOW_1 and isinstance(operator._inlets, list)
                and len(operator._inlets) == 1
                and isinstance(operator._inlets[0], dict)):
            from airflow.lineage import AUTO

            operator._inlets = [
                # See https://airflow.apache.org/docs/apache-airflow/1.10.15/lineage.html.
                *operator._inlets[0].get(
                    "datasets", []),  # assumes these are attr-annotated
                *operator._inlets[0].get("task_ids", []),
                *([AUTO] if operator._inlets[0].get("auto", False) else []),
            ]
            needs_repeat_preparation = True
        if (not AIRFLOW_1 and isinstance(operator._outlets, list)
                and len(operator._outlets) == 1
                and isinstance(operator._outlets[0], dict)):
            operator._outlets = [*operator._outlets[0].get("datasets", [])]
            needs_repeat_preparation = True
        if needs_repeat_preparation:
            # Rerun the lineage preparation routine, now that the old format has been translated to the new one.
            prepare_lineage(lambda self, ctx: None)(operator, context)

        context = context or {}  # ensure not None to satisfy mypy

        dag: "DAG" = context["dag"]
        task = context["task"]

        # TODO: capture context
        # context dag_run
        # task_instance: "TaskInstance" = context["task_instance"]
        # TODO: capture raw sql from db operators

        flow_urn = builder.make_data_flow_urn("airflow", dag.dag_id)
        job_urn = builder.make_data_job_urn_with_flow(flow_urn, task.task_id)

        base_url = conf.get("webserver", "base_url")
        flow_url = f"{base_url}/tree?dag_id={dag.dag_id}"
        job_url = f"{base_url}/taskinstance/list/?flt1_dag_id_equals={dag.dag_id}&_flt_3_task_id={task.task_id}"
        # operator.log.info(f"{flow_url=}")
        # operator.log.info(f"{job_url=}")
        # operator.log.info(f"{dag.get_serialized_fields()=}")
        # operator.log.info(f"{task.get_serialized_fields()=}")
        # operator.log.info(f"{SerializedDAG.serialize_dag(dag)=}")

        flow_property_bag: Dict[str, str] = {
            key: repr(value)
            for (key, value) in SerializedDAG.serialize_dag(dag).items()
        }
        for key in dag.get_serialized_fields():
            if key not in flow_property_bag:
                flow_property_bag[key] = repr(getattr(dag, key))
        job_property_bag: Dict[str, str] = {
            key: repr(value)
            for (key, value
                 ) in SerializedBaseOperator.serialize_operator(task).items()
        }
        for key in task.get_serialized_fields():
            if key not in job_property_bag:
                job_property_bag[key] = repr(getattr(task, key))
        # operator.log.info(f"{flow_property_bag=}")
        # operator.log.info(f"{job_property_bag=}")

        timestamp = int(
            dateutil.parser.parse(context["ts"]).timestamp() * 1000)
        ownership = models.OwnershipClass(
            owners=[
                models.OwnerClass(
                    owner=builder.make_user_urn(dag.owner),
                    type=models.OwnershipTypeClass.DEVELOPER,
                    source=models.OwnershipSourceClass(
                        type=models.OwnershipSourceTypeClass.SERVICE,
                        url=dag.filepath,
                    ),
                )
            ],
            lastModified=models.AuditStampClass(
                time=timestamp, actor=builder.make_user_urn("airflow")),
        )
        # operator.log.info(f"{ownership=}")

        tags = models.GlobalTagsClass(tags=[
            models.TagAssociationClass(tag=f"airflow_{tag}")
            for tag in (dag.tags or [])
        ])
        # operator.log.info(f"{tags=}")

        flow_mce = models.MetadataChangeEventClass(
            proposedSnapshot=models.DataFlowSnapshotClass(
                urn=flow_urn,
                aspects=[
                    models.DataFlowInfoClass(
                        name=dag.dag_id,
                        description=f"{dag.description}\n\n{dag.doc_md or ''}",
                        customProperties=flow_property_bag,
                        externalUrl=flow_url,
                    ),
                    ownership,
                    tags,
                ],
            ))

        job_mce = models.MetadataChangeEventClass(
            proposedSnapshot=models.DataJobSnapshotClass(
                urn=job_urn,
                aspects=[
                    models.DataJobInfoClass(
                        name=task.task_id,
                        type=models.AzkabanJobTypeClass.COMMAND,
                        description=None,
                        customProperties=job_property_bag,
                        externalUrl=job_url,
                    ),
                    models.DataJobInputOutputClass(
                        inputDatasets=_entities_to_urn_list(inlets or []),
                        outputDatasets=_entities_to_urn_list(outlets or []),
                    ),
                    ownership,
                    tags,
                ],
            ))

        lineage_mces = [
            builder.make_lineage_mce(_entities_to_urn_list(inlets or []),
                                     outlet)
            for outlet in _entities_to_urn_list(outlets or [])
        ]

        force_upstream_materialization = [
            models.MetadataChangeEventClass(
                proposedSnapshot=models.DatasetSnapshotClass(
                    urn=inlet,
                    aspects=[
                        models.StatusClass(removed=False),
                    ],
                )) for inlet in _entities_to_urn_list(inlets or [])
        ]

        hook = make_emitter_hook()

        mces = [
            flow_mce,
            job_mce,
            *lineage_mces,
            *force_upstream_materialization,
        ]
        operator.log.info("DataHub lineage backend - emitting metadata:\n" +
                          "\n".join(json.dumps(mce.to_obj()) for mce in mces))
        hook.emit_mces(mces)